3.063 Polymer Physics Spring 2007

• Viewpoint: somewhat more general than just polymers: **Soft Matter**

> <u>Polymers</u>, Colloids, Liquid Crystals, Nanoparticles and Hybrid Organic-Inorganic Materials Systems.

Reference: Young and Lovell, <u>Introduction to Polymer Science</u> (recommended)

Demos and Lab Experiences:

Molecular Structural Characterization (DSC, GPC, TGA, Xray, AFM, TEM, SEM...) and Mechanical & Optical Characterization

Course Info

eltweb.mit.edu/3.063 - course website: notes, hmwks... Eric Verploegen Ms. Juliette Braun Office hours - How are Wednesdays at 230-330pm?

Mini Assignment

Send Prof. Thomas

- contact info/ name/year/major/email/credit/listener
- and interests relevant to topics in this course
- Any expertise you have on lab demos, characterization tools, cool samples...

Hard vs. Soft Solids (for T ~ 300K)

- <u>Hard matter</u>: metals, ceramics and semiconductors: typically highly crystalline. U >> kT
- <u>Soft matter</u>: polymers, organics, liquid crystals, gels, foods, life(!).
 U ~ kT
- Soft matter is therefore sometimes called "delicate material" in that the forces holding the solid together and causing the particular atomic, molecular and mesoscopic arrangements are relatively weak and these forces are easily overcome by thermal or mechanical or other outside influences. Thus, the interplay of several approximately equal types of forces affords the ability to access many approximately equal energy, metastable states. One can also "tune" a structure by application of a relatively weak stimulus. Such strong sensitivity means that soft matter is inherently good for sensing applications.

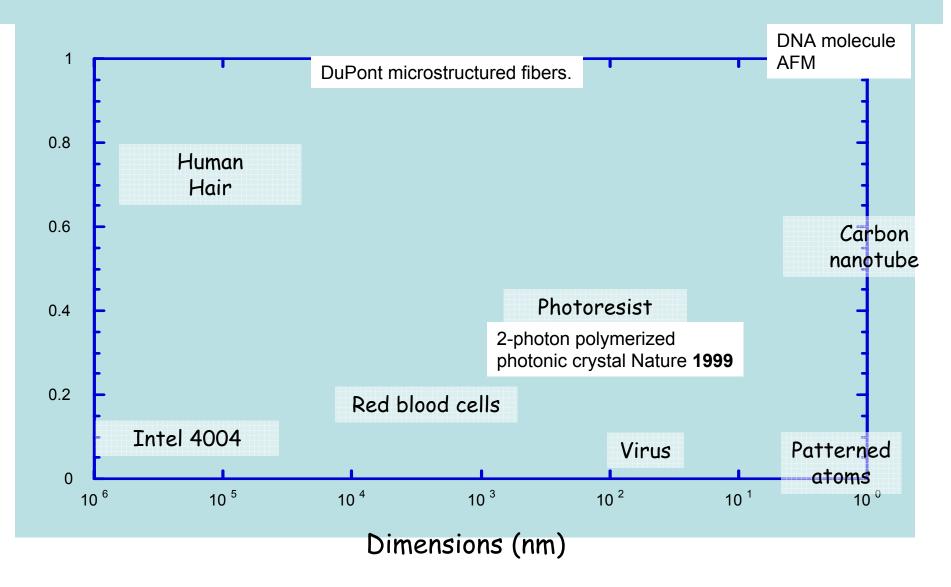
In 3.063 we aim to understand:

• <u>The Key Origins of Soft Solid Behavior</u>:

relatively weak forces between molecules many types of bonding, strong anisotropy of bonding (intra/inter) wide range of molecular shapes and sizes, distributions large variety of chemistries/functionalities fluctuating molecular conformations/positions presence of solvent, diluent entanglements many types of entropy architectures/structural hierarchies over several length scales

• Characterization of the molecular structures and the properties of the soft solids comprised of these molecules

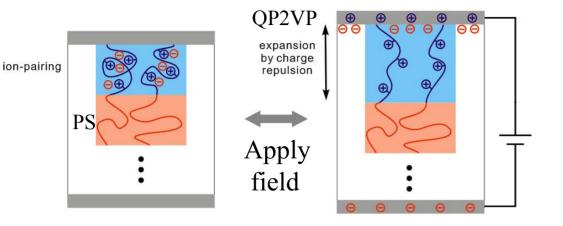
Scale in Soft Matter

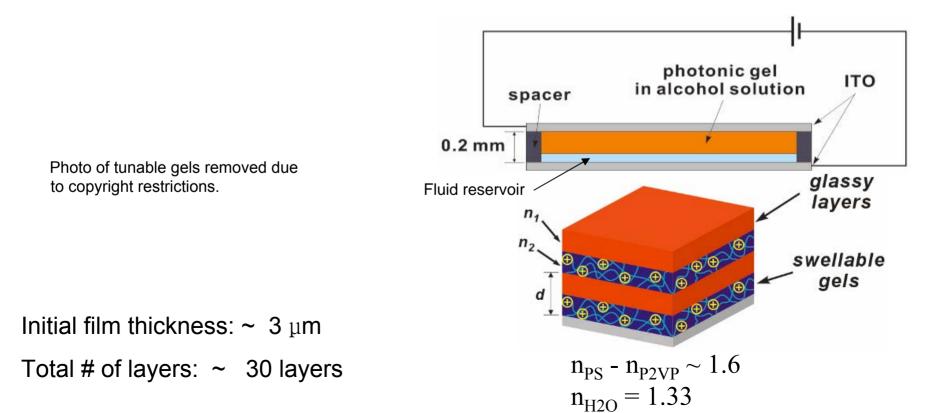


Interactions in Soft Solids

- Molecules are predominantly held together by strong covalent bonds.
- Intramolecular Rotational isomeric states
- Intermolecular potential
 - Hard sphere potential
 - Coulombic interaction
 - Lennard Jones potential (induced dipoles)
 - Hydrogen bonding (net dipoles)
 - "hydrophobic effect" (organics in water)

Polyelectrolyte Domain Spacing Change by e-Field





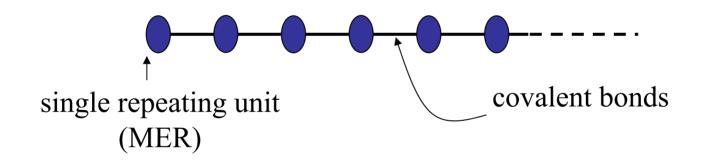
Structure of Soft Solids

- SRO (always present in condensed phases) - intra- and inter-
- LRO (sometimes present)
 - Spatial: 1D, 2D, 3D periodicities
 - Orientational
- Order parameters (translational, orientational...)
- Defects -
 - influence on properties; at present defects are largely under-appreciated;
 - e.g. transport across membranes...self assembly-nucleation, mutations, diseases
- Manipulation of Orientation and Defects: Develop methods to process polymers/soft solids to create controlled structures/hierarchies and to eliminate undesirable defects

Polymers/Macromolecules

H. Staudinger (1920's) colloidal ass'y vs. molecule

"MACROMOLECULAR HYPOTHESIS"



A SINGLE REPEAT UNIT MANY REPEAT UNITS

 $\rightarrow \underline{\text{MONO}}\text{MER} (M)$ $\rightarrow \underline{\text{POLY}}\text{MER} (M)_{n}$

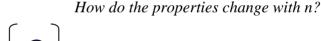
"Macromolecule" - more general term than polymer

POLYMERIZATION

Common reactions to build polymers:

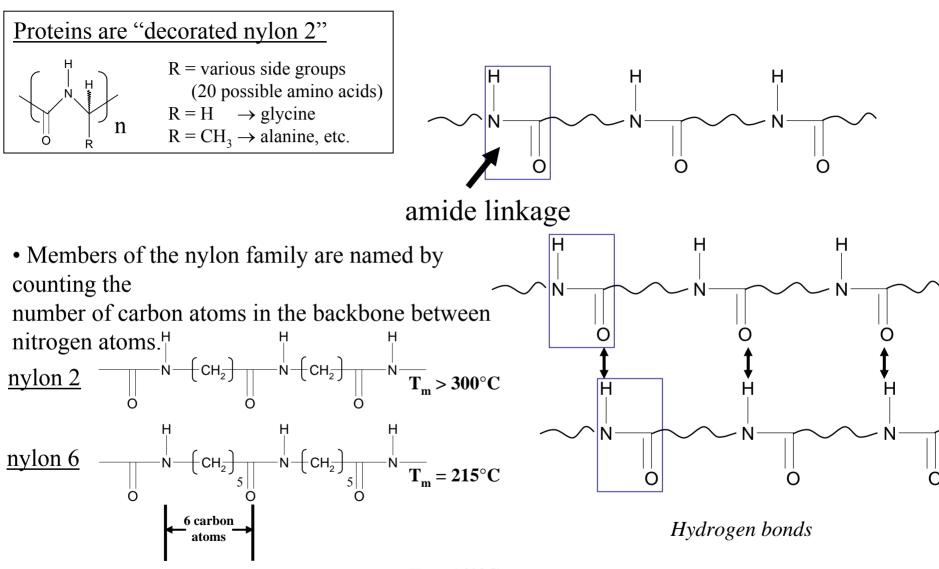
- 1. Addition: $M_n + M \rightarrow M_{n+1}$
- 2. Condensation: $M_x + M_y \rightarrow M_{x+y} + H_2O$ or HCl / etc.

Think of a polymer as the endpoint of a HOMOLOGOUS SERIES:



N = 1 2 3 Polymerization $Example: Polyethylene (n \approx 10^{4})$ $CH_2=CH_2 \rightarrow - \begin{bmatrix} CH_2 - CH_2 \end{bmatrix}_{n < 100} - \begin{bmatrix} H_2 - CH_2 - \end{bmatrix}_{n \ge 100}$ Polymer

Proteins and Polyamides (Nylons)



note nylon n= ∞ = polyethylene (!) $T_m \sim 140^{\circ}C$

Characteristic Features of Macromolecules

- Huge Range of Structures & Physical Properties
- Some examples:
 - Insulating -----> Conducting
 - Light emitting
 - Photovoltaic, Piezoelectric
 - Soft elastic -----> Very stiff plastic
 - Ultra large reversible deformation
 - Highly T, t dependent mechanical properties
 - Zero/few crystals -----> High Crystallinity
- <u>Readily Tunable Properties</u>:

Weak interactions between molecules, so chains can be readily reorganized by an outside stimulus

Chain Conformations of Polymers: 2 Extremes

n is the number of links in the chain with each link a step size l so the contour length of the chain L is nl;

As a measure of size of the chain, we can have two situations:

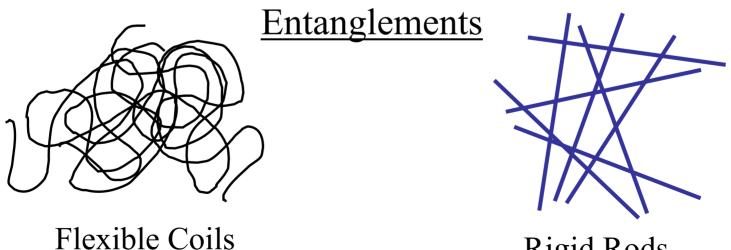
- 1. **Rigid rod**: Fully Extended Conformation $- \langle r^2 \rangle^{1/2} \approx n l = L$
- 2. Flexible coil: Random Walk

 $- \langle \mathbf{r}^2 \rangle^{1/2} \approx \mathbf{n}^{1/2} \mathbf{l}$ - note this is *much* smaller than L

Extreme Conformations of (Linear) Polymers

Isolated molecules

Rigid Rod



Rigid Rods

.357 Magnum, 22 layers of Kevlar

Polymer Architectures

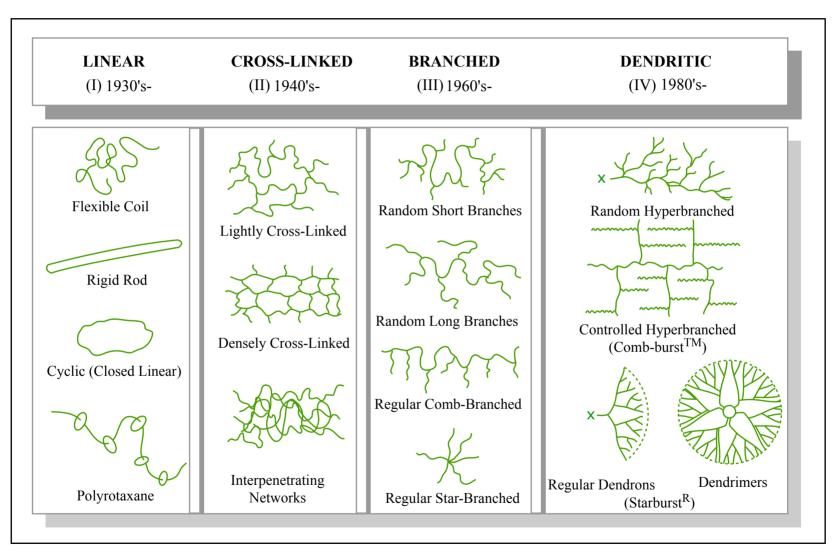
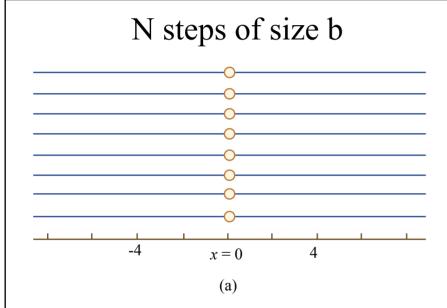
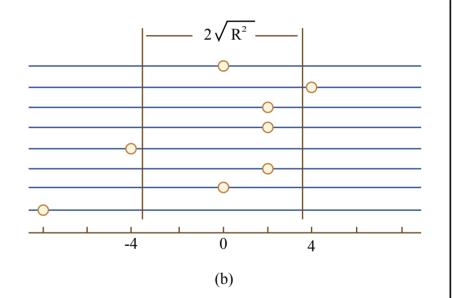


Figure by MIT OCW.

1-D Random Walk

$$\left\langle R^2 \right\rangle = N b^2$$





(a) Initial distribution of atoms, one to a line.

(b) Final distribution after each atom took 16 random jumps. $2\sqrt{R^2}$ is the calculated root mean square for the points shown.

Gaussian Distribution

$$P(r,n) = \left(\frac{2\pi nl^2}{3}\right)^{-3/2} \exp\left(-\frac{3r^2}{2nl^2}\right)$$
Note: units are [volume⁻¹]

$$\int_0^\infty P(r,n) 4\pi r^2 dr = 1$$
normalized probability

$$\left\langle r^2 \right\rangle = \int r^2 P(r,n) 4\pi r^2 dr$$
nce r
nth
r an
hers
on, here
$$\left[\underbrace{0 \atop 0}_{0,0} \underbrace{0 \atop 0}_{0,0} \underbrace{0 \atop 0}_{0,5} \underbrace{1 \atop 0}_{1,0} \underbrace{1 \atop 1}_{1,5} \underbrace{2 \atop 0}_{2,0} \underbrace{0 \atop 0}_{1,0} \underbrace{1 \atop 1}_{1,5} \underbrace{1 \atop 2}_{2,0} \underbrace{1 \atop 0}_{1,5} \underbrace{1 \atop 0}_{2,0} \underbrace{1 \atop 0}_{1,5} \underbrace{1 \atop 0}_{1,5} \underbrace{1 \atop 0}_{2,0} \underbrace{1 \atop 0}_{1,5} \underbrace$$

 $R < R^2 >$

Probability of distance r between 1st and nth monomer units for an assembly of polymers is a Gaussian distribution, here shown for 3D

Figure by MIT OCW.

Flexible Coil Chain Dimensions

3 Related Models

Mathematician's Ideal Random Walk

$$\left\langle r^{2}\right\rangle = nl^{2}$$

- Chemist's Chain in Solution and Melt
- $\langle r^2 \rangle = n \ l^2 \ C_{\infty} \ \alpha^2$

• Physicist's Universal Chain

 $\langle r^2 \rangle = N b^2$

Mathematician's Ideal Chain

 $|l_i| = l$ *n* monomers of length *l* No restrictions on chain passing through itself (excluded volume), nopreferred bond angles $\vec{r}_{l,n} = \vec{l}_1 + \vec{l}_2 + \dots + \vec{l}_n = \sum_{i=1}^{n} \vec{l}_i$ $\langle r_{1,n} \rangle = 0$ since $\{ r_{1,n} \}$ are randomly oriented Scalinglaw: $\langle \vec{r}_{l,n}^2 \rangle^{\frac{1}{2}} \propto n^{\frac{1}{2}}$ Consider $\langle r_{1,n}^2 \rangle^{\frac{1}{2}} \neq 0$ $\langle \vec{r}_{l,n} \cdot \vec{r}_{l,n} \rangle = \langle \sum l_i \cdot \sum l_j \rangle$ $= \left\langle \left(l_{1} \cdot \left(l_{1} + l_{2} + l_{3} + \ldots \right) + l_{2} \cdot \left(l_{1} + l_{2} + l_{3} + \ldots \right) + \ldots \right) \right\rangle$ $\left\langle \begin{vmatrix} l_{1} \cdot l_{1} & l_{1} \cdot l_{2} & l_{1} \cdot l_{3} & \dots & l_{1} \cdot l_{n} \\ l_{2} \cdot l_{1} & l_{2} \cdot l_{2} & & & \\ & & \ddots & & \\ & & & \ddots & & \\ l_{n} \cdot l_{1} & & & l_{n} \cdot l_{n} \end{vmatrix} \right\rangle \stackrel{l^{2}}{\rightarrow} \stackrel{0}{\rightarrow} \stackrel{\cdots}{\rightarrow} \stackrel{\cdots}{\rightarrow}$

Chemists' Chain: Fixed Bond Angle (and Steric Hinderance)

Simpliest case:

Chain comprised of carbon-carbon single bonds

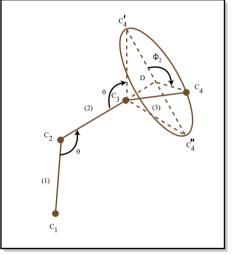


Figure by MIT OCW.

 $l_i \cdot l_{i+1} = l^2 (-\cos\theta)$ Fixed θ : $l_i \cdot l_{i+2} = l^2 (-\cos\theta)^2$ • projections of bond onto immediate neighbor In general: $l_i \cdot l_{i+m} = l^2 (-\cos \theta)^m$ l^2 , $l^2(-\cos\theta)$, $l^2\cos^2\theta$, $l^2(-\cos^3\theta)$... $\frac{1}{\text{fgure by MIT OCW.}} \begin{pmatrix} 1 & -\cos\theta & \cos^2\theta & -\cos^3\theta & \dots & (-\cos\theta)^{n-1} \\ -\cos\theta & 1 & -\cos\theta & \cos^2\theta & \dots \\ \cos^2\theta & -\cos\theta & 1 & -\cos\theta & \cos^2\theta \end{pmatrix}$ 1 $\sum \approx n l^2 \left(\frac{1 - \cos \theta}{1 + \cos \theta} \right)$

Special case: Rotational conformations of n-butane

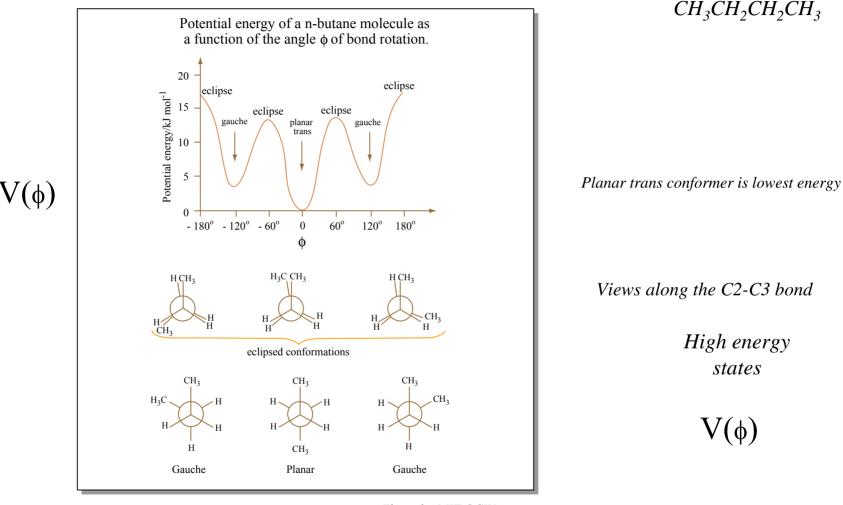


Figure by MIT OCW.

Low energy

states

Conformers: Rotational Isomeric State Model

- Rotational Potential
 - Probability of rotation angle phi

$$V(\phi)$$

 $P(\phi) \sim exp(-V(\phi)/kT)$

V/L)

- Rotational Isomeric State (RIS) Model
 - e.g. Typical 3 state model : g^- , t, g^+ with weighted probabilities
 - Again need to evaluate $l_i \cdot l_{j+1}$ taking into account probability of a ϕ rotation between adjacent bonds
- This results in a bond angle rotation factor of $1 + \langle \cos \phi \rangle$

combining

$$\langle r^2 \rangle = n l^2 \left(\left(\frac{1 - \cos \theta}{1 + \cos \theta} \right) \left(\frac{1 + \langle \cos \phi \rangle}{1 - \langle \cos \phi \rangle} \right) \right) = n l^2 C_{\infty}$$

where

$$C_{\infty} = \left(\left(\frac{1 - \cos \theta}{1 + \cos \theta} \right) \left(\frac{1 + \langle \cos \phi \rangle}{1 - \langle \cos \phi \rangle} \right) \right)$$

The so called "Characteristic ratio" and is compiled for various polymers

 $1 - \langle \cos \phi \rangle$

$$\langle \cos \phi \rangle = \frac{\int \cos(\phi) P(\phi) d\phi}{\int P(\phi) d\phi}$$
 with $P(\phi) = \exp(-V(\phi)/kT)$

The Chemist's Real Chain

- <u>Preferred bond angles and rotation angles</u>:
 - θ, φ. Specific bond angle θ between mainchain atoms (e.g. C-C bonds) with rotation angle chosen to avoid short range intra-chain interferences. In general, this is called "steric hinderance" and depends strongly on size/shape of set of pendant atoms to the main backbone (F, CH₃, phenyl etc).
- <u>Excluded volume</u>: self-crossing of chain is prohibited (<u>unlike</u> in diffusion or in the mathematician's chain model): Such contacts tend to occur between more remote segments of the chain. The set of allowed conformations thus excludes those where the path crosses and this *forces* $\langle r_{l,n}^2 \rangle^{1/2}$ *to increase*.
- <u>Solvent quality</u>: competition between the interactions of chain segments (monomers) with each other vs. solvent-solvent interactions vs. the interaction between the chain segments with solvent. *Chain can expand or contract.*
 - monomer monomer
 - solvent solvent ϵ_{M-M} VS. ϵ_{S-S} VS. ϵ_{M-S}
 - monomer solvent

Excluded Volume

- The excluded volume of a particle is that volume for which the center of mass of a 2nd particle is excluded from entering.
- Example: interacting hard spheres of radius a
 - volume of region denied to sphere A due to presence of sphere B

$$- V = 4/3\pi (2a)^3 = 8 V_{sphere}$$

but the excluded volume is shared by 2 spheres so

$$\mathbf{V}_{\text{excluded}} = \mathbf{4} \ \mathbf{V}_{\text{sphere}}$$

Solvent Quality and Chain Dimensions

Theta θ Solvent

Solvent quality factor α

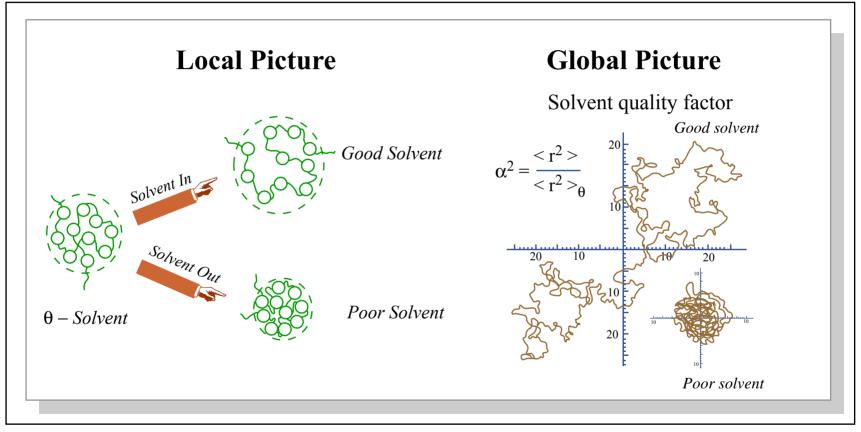
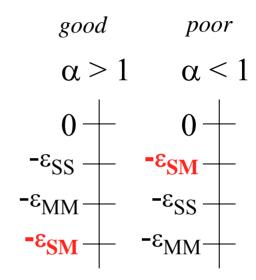


Figure by MIT OCW.

- Solvent quality:
 - M-M, S-S, M-S interactions: ϵ_{M-M} , ϵ_{S-S} , ϵ_{M-S}

Solvent Quality (α)

 good solvent: favorable ε_{SM} interaction so <u>chain expands</u> to avoid monomer-monomer contacts and to maximize the number of solvent-monomer contacts.



• **poor solvent**: unfavorable ε_{SM} , therefore monomer-monomer, solvent-solvent interactions preferred so <u>chain contracts</u>.

$$\langle r^2 \rangle = n l^2 C_{\infty} \alpha^2$$

Theta Condition: Choose a solvent and temperature such that...

• Excluded volume chain expansion is just offset by *somewhat* poor solvent quality and consequent slight chain contraction:

called

$$\Rightarrow \Theta \text{ condition } (\alpha = 1)$$

$$\langle r^2 \rangle_{\theta} = n \ l^2 \cdot \left(\frac{\text{local steric influence}}{\text{bond angles, rotation angles}} \right) = n \ l^2 \ C_{\infty}$$

$$\alpha^2 = \frac{\langle r^2 \rangle}{\langle r^2 \rangle_{\theta}} \quad \text{"solvent quality factor"}$$

Actually expect a radial dependence to alpha, since segment density is largest at center of "chain segment cloud".

Random Walks

