Lecture 15: Hierarchically Ordered BCP-Nanoparticle Composites

Polymer Based Nanocomposites

Matrix: Polymers and Block Copolymers Filler: Nanoparticles

> 0, 1, 2D Fillers Ligands for Dispersion

Co-assembly of BCP + Ex situ synthesized NP

BCP Template for Control of Location and Orientation of NP

Morphological Interplay and Emergent Properties

Nanocomposites

- **Nanocomposites:** Heterogeneous materials with at least one characteristic length scale in the nm range
- Polymer Nanocomposites are comprised of a polymeric material and a nanoscale material.
 - -Typically made at 1-5 vol% of nanoparticles
 - New properties arising from: particle size and shape, particle locations and (possible) connectivity/proximity of particles

• Many factors affect polymer nanocomposite structure:

- Synthesis method (melt compounding, solvent blending, in-situ polymerization, emulsion polymerization etc).
- -Type of nanoparticles and their surface treatments (ligand shells)
- -Polymer matrix (Crystallinity, Molecular Weight, Polymer Chemistry, Blocks...)
- -Nanocomposite morphology: <u>Control of location and orientation of NP</u>

• Understanding and optimizing composite properties is very challenging and important.

NanoComposite Opportunities

Properties become **size and shape dependent** below some critical length scale.

Dynamically tunable materials and properties.

Hybrid material combinations *unattainable* in nature.

Sophisticated tailoring of Composite Properties

New materials, new properties, new phenomena Hierarchical structures; gradients, proximity effects...

Spatial and Orientational Ordered NP --relatively unexplored regime - lots of potential!

Crystalline NanoParticles

Optical properties determined by quantum confinement effects, (and scattering, absorption, dielectric constant)

Metal: (plasmonics)

 \rightarrow surface scattering affects electronic properties for particle size < mean free path of an electron (plasmon: coherent electron oscillation); energylevel discretization Variable size CdSe dots for size < 1.0 nm (metals become insulators!)

Semiconductor:

 \rightarrow band gap widens for size < exciton radius (plus high photoluminescence efficiency)

Courtesy of Felice Frankel. Used with permission.

The color of Gold Image from Wikimedia Commons, http://commons.wikimedia.org

NanoWorld Surprises: Mechanical Example: Polymer Nanocomposites

Polymer Nanocomposites

Outstanding Property Enhancements

Figure by MIT OCW.

Characteristics of NP Composites

- Low vol % particle-particle correlation threshold
 –Ultra low percolation threshold (~ 0.1 vol%)
- Particle number density up to ~ 10^{20} / cm³
- S/V per particle of ~ $10^7 \text{ cm}^2/\text{cm}^3$
- Particle size, interparticle spacing and R_g of the polymer host are all comparable

Conventional Composites vs. NanoComposites

Image removed due to copyright restrictions.

Please see Fig. 1 in Bockstaller, Michael M., et al. "Block Copolymer Nanocomposites: Perspectives for Tailored Materials." *Advanced Materials* 17 (2005): 1331-1349.

Economics of Additives

- MMT nanoclays
- Carbon fibers
- POSS®
- MWNT (multiwalled)
- SWNT (single walled)
- n-Silica
- n-Aluminum Oxide
- n-Titanium Dioxide

- \$3.5/lb
- \$95/lb
- \$1,000/lb-R&D
- \$3,178/lb (\$7/g)-R&D
- \$227,000/lb (\$500/g)
- \$8.5/lb
- \$11.8/lb
- \$11.8/lb

The Future - CNT the ultimate polymer?

E = 1 TPa(exp and calc) $\sigma_{\rm f} \sim 50 + {\rm GPa}$ (calc) Values for individual tubes

CNT Satellite Tether

Image removed due to copyright restrictions.

Please see the cover of Scientist Today, July/August 1997.

Single wall CNT fibres

TEM images - note catalyst particles in left image.

Courtesy Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

2D Sheet-like NPs: Sodium Montmorillonite

- Clay
- 2D Sheet-like structure
- (2:1) phyllosilicate
- 300:1 Aspect ratio
- Isomorphoric substituted cations
- Counter ions in galleries hold individual sheets together to form 10-20 sheet stacks called "tactoids"

Image from Wikimedia Commons, http://commons.wikimedia.org.

Lateral dimensions > 300 nm, Individual layer thickness ~ 1nm

NP-Block Polymer Materials Platform

BCP Host Properties:

relatively

Accessing New Properties via NP Additives

- 0, 1 and 2D particles (e.g. Q Dots, SWCNTs, Clays)
- spatial and orientational ordering of particles
- emergent properties from proximity effects

Nanoparticle Composites: MULTIFUNCTIONAL MATERIALS

Key Attributes of NP-BCP Composites

- Size, shape, symmetry of both the NP and the BCP host
- Thermodynamic interactions (ligands and polymer)
- At least one NP dimension < one BCP domain length
- Processing conditions applied fields
- Emergent properties

2 Approaches to NP-BCP Composites

(1) In situ synthesis of NP within BCP matrix

Diffusion/reaction/nucleation but restricted NP synthesis pathways since chemistry must occur inside a polymeric matrix

(2) *Ex situ synthesis* of NP followed by blending into BCP matrix:

Synthesis is done under preferrred conditions (e.g. in solution w/o oxygen, well stirred, homogeneous reactions...)

Followed by Co-assembly of NP + BCP ~ (equilibrium thermodynamics)

Nanoparticle Block Copolymer Composites

Novel Microstructured Materials With Tunable Properties

Nanoparticle

Strong, Ex situ Synthesis Stiff, & & High dielectric constant, Co-assembly Luminescent, Magnetic, Impermeable Conductive (thermal/electrical) -basically NPs provide property enhancements not available with polymers.

Block Polymer

Self assembly in 1D, 2D, 3D Processing MultifunctionalPropertie Glassy, rubbery

Unique properties of the Nanocomposite arise from :

Small distances between components Confinement & Compartmentalization Ultra-large interfacial area per volume Stabilization of non-equilibrium phases Multifunctionality-tailoring of properties Size-dependent physics & chemistry

O-D Nanoparticles TEM GOLD SiO₂

Image removed due to copyright restrictions.

Please see Supporting Material for Bockstaller, Michael R., et al. "Size-Selective Organization of Enthalpic Compatibilized Nanocrystals in Ternary Block Copolymer/Particle Mixtures." *Journal of the ACS* 125 (2003): 5276-5277.

 $\langle d \rangle = 3-5 \text{ nm}$

 $\langle d \rangle = 45 \text{ nm}$

Ex situ Synthesis of NP Ligands

Self Organization via Co-assembly of *XD-YD* NP-BCP Materials

Parameters

- Nanoparticle: size and shape: a, b, c and *IPDS* X = 0, 1, 2D dimensional
- BCP domain size and shape: A, B, C and *IMDS* Y = 1, 2, 3D periodic
- Corona: ligand chemistry, grafting density, MW of ligand
- BCP: composition, architecture, MW
- Interaction parameters: χ_{ij}

Example: 1D NP in 2D BCP

Hex packed cylinders

Image removed due to copyright restrictions.

Please see Fig. 2 in Bockstaller, Michael M., et al. "Block Copolymer Nanocomposites: Perspectives for Tailored Materials." *Advanced Materials* 17 (2005): 1331-1349.

nanorod

Morphological Interplay: Co-assembly of NP-BCP Materials

- Order-Order Phase Transitions:
 Volume fraction driven (NPs increase the effective vol fraction of the microdomains that they reside in)
 - Shape accomodation driven

-e.g. NP Sheet + BCP cylinder domain -> BCP Lamellae

- -e.g. Curved NP rods + BCP cylinders -> BCP Lamellae
- NP Templating of BCP:
 - Heterogeneous nucleation of BCP domains on NP
 - Kinetics of transformation is enhanced
 - Orientational ordering of BCP by flow orienting NP
- Field Assisted Assembly: Top down <-> Bottom Up
 - Topographic confinement: commensuration to template
 - Flow, magnetic and electric fields

NP-BCP Symmetry Compatibility Map

Image removed due to copyright restrictions.

Please see Fig. 4 in Bockstaller, Michael M., et al. "Block Copolymer Nanocomposites: Perspectives for Tailored Materials." *Advanced Materials* 17 (2005): 1331-1349.

Compatible NP-BCP Nanocomposites

0D - 3D

1D - 2D

Image removed due to copyright restrictions.

Please see Fig. 6 in Bockstaller, Michael M., et al. "Block Copolymer Nanocomposites: Perspectives for Tailored Materials." *Advanced Materials* 17 (2005): 1331-1349.

~2D - 3D

2D - 1D

Chain Topology Issues

Block Polymers

Diblock

Limited Interdigitation

Triblock

Image removed due to copyright restrictions.

Please see Fig. 5 in Bockstaller, Michael M., et al. "Block Copolymer Nanocomposites: Perspectives for Tailored Materials." *Advanced Materials* 17 (2005): 1331-1349.

NP/Block Polymer Composites

Next to NP: Loops only

Particle-Matrix Energetics

Incorporation of NPs into the microdomains, locally deforms the chains.

Chain deformation and IMDS area increase

Image removed due to copyright restrictions.

Please see Fig. 3 in Bockstaller, Michael M., et al. "Block Copolymer Nanocomposites: Perspectives for Tailored Materials." *Advanced Materials* 17 (2005): 1331-1349.

Location, Location, Location

□ Target a specific domain

Locate within the domain

- Homogeneous
- Interfacial
- Central

0D-1D NP-BCP Nanocomposites

Location:Interfacial

Small Au particles

Gold NP

Image removed due to copyright restrictions.

Please see Fig. 9 in Bockstaller, Michael M., et al. "Block Copolymer Nanocomposites: Perspectives for Tailored Materials." *Advanced Materials* 17 (2005): 1331-1349.

Silica NP

Location:Center

Medium size SiO₂ particles

Ternary Nanocomposite Locations:Interfacial & Center

(see next slide for details)

Ternary NP/BCP Nanocomposite
(2 types of particles)
Control of Particle LocationPS-PEP+SiO2-R2($\phi \sim 0.04$)+Au-S-C18H37 ($\phi \sim 0.04$)
Cross sectional TEM

Image removed due to copyright restrictions.

Please see Fig. 2 in Bockstaller, Michael R., et al. "Size-Selective Organization of Enthalpic Compatibilized Nanocrystals in Ternary Block Copolymer/Particle Mixtures." *Journal of the ACS* 125 (2003): 5276-5277.

Au $\langle d \rangle = 3 \text{ nm}$ Located near the IMDSSiO2 $\langle d \rangle = 22 \text{ nm}$ Located near the domain center

Electrical Anisotropy in Nanocomposites

Ion transport is 100 times greater parallel to clay layers than when ions have to navigate around the high aspect ratio platelets

Images removed due to copyright restrictions.

GISAXS showing anisotropic orientation of clay platelets

Hybrid organic/inorganic systems

Please see Scheme 7 in Simon, Peter F. W., et al. "Block Copolymer-Ceramic Hybrid Materials from Organically Modified Ceramic Precursors." *Chemical Materials* 13 (2001): 3464-3468.

Mechanical properties can be tuned over several orders of magnitude !!!

The BCP is used as a "structure directing agent" for the inorganic precursor materials. A condensation reaction takes place leading to the formation of the inorganic material

Figure by MIT OCW.