Lecture 13: Influence of Chain Architecture on Microdomain Characteristics

- Pursuit of New Block Polymer Structures...
 - AB: Diblocks, Rings, Multiblocks, Miktoarm Stars, Star-Diblocks
 - ABC: Terblock, Miktoarm Stars
- Novel Microdomain Patterns Arising:
 - The Theorist's Nightmare: Stadler's Goldmine
 - Processing: a neutral(?) solvent
 - Critical $N\chi_{AB}$ depends on Architecture
 - Architecture can drive block mixing

Possible Chain Architectures from an A/B/C Terpolymer

Flexible Coil-Noncrystalline A/B/C Copolymers

Linear

• Rings

Junctions confined to surfaces

Junctions confined to surfaces

Miktoarm Stars

Junction confined to lines

Predicting the Future of ABC Polymers

Text removed due to copyright restrictions.

Please see the final paragraphs of Mogi, Yasuhiro, et al. "Preparation and Morphology of Triblock Copolymers of the ABC Type." *Macromolecules* 25 (1992): 5408-5411. and Auschra, Clemens, and Stadler, Reimund. "New Ordered Morphologies in ABC Triblock Copolymers." *Macromolecules* 26 (1993): 2171-2174.

Typical Experimental Procedure

• Films were cast from CHCl₃ solutions (~4%wt) over a period of 4 days.

$$\begin{split} \delta_{PS} &= 9.1 (cal/cm^3)^{1/2} \\ \delta_{PI} &= 8.2 (cal/cm^3)^{1/2} \\ \delta_{PMMA} &= 9.3 (cal/cm^3)^{1/2} \\ \delta_{CHC13} &= 9.3 (cal/cm^3)^{1/2} \end{split}$$

• Films were annealed under vacuum at 140°C for 5 days.

- The X-ray diffraction patterns (SAXS) were acquired at room temperature at the Time-Resolved Diffraction Facility at the National Synchrotron Light Source at Brookhaven National Laboratory (X12B).
- Thin sections (500-1500 Å) were cryomicrotomed at -90⁰C.
- Sections were stained OsO4 (PI) RuO4 (PS).
- Bright Field Transmission Electron Microscopy (TEM).

Complex Morphologies in ABC BCPs

Formation of Ordered Microdomains by **Self Assembly**

Linear ABC Terpolymer

Image removed due to copyright restrictions.

Please see Bates, F. S., and Fredrikson, G. H. "Overview of ABC Structures and Thermodynamics." *Physics Today* 52 (February 1999): 32

Figure by MIT OCW.

MORPHOLOGY DIAGRAM FOR TERPOLYMERS

Ternary-like Morphology Diagram

Image removed due to copyright restrictions.

Please see Fig. 9d in Tschierske, Carsten. "Non-conventional soft matter." Ch. 6 in Annual Report on Progress in Chemistry C: Physical Chemistry 97 (2001): 191-267.

"Stadler's Goldmine"

Sequence Matters: A/B/C

ISV vs SIV 1:1:1

Images removed due to copyright restrictions.

Please see Fig. 2 in Gido, Samuel P., et al. "Observation of a Non-Constant Mean Curvature Interface in an ABC Triblock Copolymer." *Macromolecules* 26 (1993): 2636-2640.

Concentric cylinders of P2VP, surrounded by a PI annulus in a matrix of PS

SIV

ISV

33/33/33 = Lamellae or Coaxial Cylinders

S.P. Gido, D.W. Schwark, E.L. Thomas, M.C. Goncalves, *Macromolecules*, 26, 2636 (1993)

Why? Chi parameter and avoiding segment-segment contact

Note: Noncircular IMDS

"Knitting Pattern" Microdomain Morphology

PS-PEB-PMMA

Linear triblock

Image removed due to copyright restrictions.

Please see Fig. 1 and 4e in Breiner, Ulrike, et al. "Structural Characterization of the 'Knitting Pattern' in Polystyrene-*block*-poly(ethylene-*co*butylene)-*block*-poly(methyl methacrylate) Triblock Copolymers." *Macromolecules* 31 (1998): 135-141.

Theorist's Nightmare, Uli's Knitting

Image removed due to copyright restrictions.

Please see Fig. 4b in Breiner, Ulrike, et al. "Structural Characterization of the 'Knitting Pattern' in Polystyrene-*block*-poly(ethylene*co*-butylene)-*block*-poly(methyl methacrylate) Triblock Copolymers." *Macromolecules* 31 (1998): 135-141.

PS-PEB-PMMA

Linear triblock

ABC Terpolymer Microstructure

Image removed due to copyright restrictions.

Please see Fig. 4a in Breiner, Ulrike, et al. "Structural Characterization of the 'Knitting Pattern' in Polystyrene-*block*-poly(ethylene*co*-butylene)-*block*-poly(methyl methacrylate) Triblock Copolymers." *Macromolecules* 31 (1998): 135-141.

Grain Boundaries & Defects

Non-CMC IMDS in PS/PEB/PMMA Triblock

Junction Distribution

Image removed due to copyright restrictions.

Please see Fig. 5a and 4b in Breiner, Ulrike, et al. "Structural Characterization of the 'Knitting Pattern' in Polystyrene-*block*poly(ethylene-*co*-butylene)-*block*poly(methyl methacrylate) Triblock Copolymers." *Macromolecules* 31 (1998): 135-141.

No Junctions On IMDS! 2 differently shaped PEB domains

TEM Image

RuO₄ PS Staining Q: Influence on Mechanicals?

Types of Junctions

Junctions

• Number and Type of Junctions per copolymer

interior/exterior

- Functionality of the Junction
- · Compositional Bias across the Junction
- Chain Packing -Statistical Segment Differences
- Interface Area of the Junction
- Preferred Local Interface Curvature C₁ and C₂

Architecture: Manipulating the IMDS At fixed Composition

More Complexity: Multiple IMDS

Concept: Locally preferred IMDS Curvature

Miktoarm A/B Star Copolymers

Miktoarm Star Copolymers

Miktos = mixed

4-Miktoarm Star

4-Miktoarm Star Copolymer (A₂B₂)

4-Miktoarm Star Block Copolymer [(AB)₃A]

Architectural Influence on the Morphology Diagram

ABC Polymers

Many Macromolecular Architectures...

Two junctions Confined to IMDS *Surfaces* Dependence on the block sequence

One junction Confined to <u>Lines</u> All blocks interact

SYNTHESIS AND PHASE SEPARATION OF MODEL 3-MIKTOARM STAR TERPOLYMERS

Synthesis (Anionic Polymerization, Controlled Chlorosilane Chemistry) Molecular Characterization (SEC, MO, LALLS, NMR) Morphology (TEM, SAXS)

ABC Miktoarm <u>Star</u> Terpolymers

ABC Miktoarm Star Block Copolymers

For 2 dimensional periodic structures, the components form domains which partition the material into <u>polygonal structures</u>, with all 3 arm components contacting at every vertex of the structure.

Junctions are confined to periodic <u>lines</u> which are orthogonal to and pass through the vertices of the tiling.

In 2 dimensions, the condition to minimize interfacial boundary length at fixed area favors formation <u>of constant curvature</u> <u>domain boundaries</u>: segments of circular arcs or straight lines.

References:

A/B Chain Architecture and Asymmetry Effects on the Morphology Diagram S. T. Milner, Macromolecules 27, 2227 (1994)

Theoretical ABC Morphology Diagrams for Strong Segregation W. Zheng and Z-G Wang, Macromolecules 28, 7215 (1995)

Overview of ABC Structures and Thermodynamics F. S. Bates and G. Fredrickson, Physics Today, 32, Feb (1999)