The Intermaterial Dividing Surface (IMDS)

Can think of the microdomain structure as comprised of a set of surfaces that define the changeover in composition from Block A to Block B

The IMDS in an AB diblock copolymer system:

Characterize the IMDS

Image removed due to copyright restrictions.

Please see Fig. 1 in Winey, K.I., Thomas, E.L. and Fetters, L.J. "Ordered Morphologies in Binary Blends of Diblock Copolymer and Homopolymer and Characterization of their Intermaterial Dividing Surfaces." *Journal of Chemical Physics* 95 (December 15, 1991): 9367-9375.

Mean curvature: Arithmetric average of the two *principal* curvatures:

Image removed due to copyright restrictions.

Please see Fig. 2b in Thomas, E. L., et al. "Phase Morphology in Block Copolymer Systems." *Philosophical Transactions: Physical Sciences and Engineering* 348 (July 15 1994): 149-166.

IMDS Shapes of Physical Interest

- Embedded surfaces (non self-intersecting)
- Closed surfaces
- Periodic surfaces (1, 2, or 3D periodic)

3-3 Bicontinuous Structures: L. E. Scriven, Nature, 263, 123-125, (1976)

Detailed Structure of the IMDS

• Energy functional to define surface

$$\varepsilon(S) = \iint_{S} F(C_{1}, C_{2}) dS'$$

Variational problem:

$$\delta \varepsilon(S) = 0$$

$$F(C_1, C_2) = \alpha (H - H_o)^2 + \beta K$$

 α = surface tension β = chain stretching, junction localization

Since morphology is at fixed composition. This suggests cmc surfaces

Surfaces of Constant Mean Curvature

Specify Conditions: 1. Minimize area2. Enclose a fixed volume

$$\int_{\alpha} \alpha'(s) ds \to \text{Min}$$
$$V_{\alpha} \equiv \text{constant}$$

Variational equation:

 $H \equiv \text{constant}$

Surfaces of CMC cont'd

Periodic Surfaces as Candidate Microdomain Structures

• Constant Thickness Surfaces (CT)

Originally developed for surfactant-oil-water systems. Chain packing requirements of one component satisfied; Reference base surface is usually IPMS

• Constant Mean Curvature Surfaces (CMC)

Minimization of interfacial area at fixed volume fraction

• Surface defined by Level Sets (LS)

Connected microdomain structures of specified symmetry; the curvature and domain thickness vary; can be generated systematically using a crystallographic approach:

Wohlgemuth, M., Yufa, N., Hoffman, J., Thomas, E.L., "Triply Periodic Bicontinuous Cubic Microdomain Morphologies by Symmetries", *Macromolecules*, <u>34</u>. 6083-6089, (2001).

Model IMDS Patterns for Microphase Separated Morphologies

- Minimize interfacial area (H term in free energy) Constant Mean Curvature Surface
- Maximize chain conformational entropy (S term) Constant Thickness Surface

Figure by MIT OCW.

Optimum surface structure must respect both H and S terms

Constant Thickness (CT) Model

Figure by MIT OCW.

CT – Gyroid Model

A/B BCP microdomain structure is the double gyroid

Schoen's G Minimal Surface used as Base Surface

	Space groups
Double Gyroid Network:	IaĴd
Gyroid Minimal Surface:	I4 ₁ 32
Single Gyroid Network:	I4 ₁ 32

PHOTONIC CRYSTALS FROM SELF-ASSEMBLED BLOCK COPOLYMERS

4 Microdomain Morphologies for A/B Diblocks

Figure by MIT OCW.

Photonic Block Copolymers

Figure by MIT OCW.

0.34<f_{PS}<0.62

Please see Fig. 2a in Urbas, Augustine, et al. "Tunable Block Copolymer/Homopolymer Photonic Crystals." *Advanced Materials* 12 (2000): 812-814.

0.28<f_{PS}<0.34

Please see Fig. 1 in Urbas, Augustine, et al. "Bicontinuous Cubic Block Copolymer Photonic Crystals." *Advanced Materials* 14 (December 17, 2002): 1850-1853.

$0.17 < f_{PS} < 0.28$

Please see:Fig. 1a, 11 in Park, Cheolmin, et al. "Enabling Nanotechnology with Self-assembled Block Copolymer Patterns." *Polymer* 44 (2003): 6725-6760.

f_{PS}<0.17

Please see Fig. 8 in Lammertink, Rob G. H., et al. "Periodic Organic-Organometallic Microdomain Structures in Poly(styrene-blockferrocenyldimethylsilane) Copolymers and Blends with Corresponding Homopolymers." *Journal of Polymer Science* B 37 (1999): 1009-1021.

Lamellae

Double gyroid

HCP cylinders

BCC sphere

POLYMER-BASED PHOTONIC CRYSTALS

OMNIREFLECTIVITY - 1D PBG

Image removed due to copyright restrictions.

Please see Fig. 2b in Fink, Yoel, et al. "A Dielectric Omnidirectional Reflector." *Science* 282 (November 27, 1998): 1679-1682.

3M GBO plastic reflectors

Image removed due to copyright restrictions.

Please see Fig. 4 in Weber, Michael F., et al. "Giant Birefringent Optics in Multilayer Polymer Mirrors." *Science* 287 (March 31, 2000): 2451-2456.

PMMA - polyester

white light

Photonics and Self Assembly

Self Assembly enables the fabrication of materials with periodic variations in properties (dielectric constant)

Patterning in 3-D is simple via self assembly

Design Considerations for Photonic Crystals

- Geometrical structure with periodic index variations
- Components with large difference in the indices of refraction
- Optically transparent in the frequency range of interest
- Control over the length scale of the morphology
- Highly ordered structures with specific (controlled) defects

Design Criteria

Refractive index contrast and number of periods

Influence of Dielectric Contrast on Reflectivity

Image removed due to copyright restrictions.

Please see Fig. 1c in Yoon, Jongseung, et al. "Self-Assembly of Block Copolymers for Photonic-Bandgap Materials." *MRS Bulletin* 30 (October 2005): 721-726

Urbas, A., Fink, Y., and Thomas, E.L., "One Dimensionally Periodic Dielectric Reflectors from Self-Assembled Block Copolymer-Homopolymer Blends", *Macromolecules*, <u>32</u>, 4748-4750 (1999).

Material and Optical Parameters

PS:	$d_1 = 100 \text{ nm};$	$n_1 = 1.59$
-----	-------------------------	--------------

PI: $d_2 = 100 \text{ nm}; n_2 = 1.52$

40 periods (80 layers)

Fink, Y., Winn, J.N., Fan, S., Chen, C., Michel, J., Joannopoulos, J.D., Thomas, E.L., "A Dielectric Omnidirectional Reflector," *Science*, <u>282</u>, 1679-1682 (1998)

Material and Optical Parameters

- Te: $d_1 = 0.8 \ \mu m$; $n_1 = 4.6$
- PS: $d_2 = 1.65 \ \mu m;$ $n_2 = 1.59$

4.5 periods (9 layers)

Reflectivity of BCP Lamellae

 Observed shift in color of reflectivity as gels dry

Green reflector: PS/PI BCP

12% solution of PS/PI 480k/560k in Toluene

Self Assembled Metallodielectric Mirror

Concept: Sequester Nanoparticles in a Particle-phobic A/ Particle-philic B Diblock Copolymer and achieve High Dielectric Contrast

Figure by MIT OCW.

M. Bockstaller, R. Kolb and E. L. Thomas, *Adv. Mater.*, **13**, 23, (2001), 1783-1786.

Block Copolymer PBG - Template Approach To Increase Dielectric Contrast

Idea: Sequester high index quantum dots (nanoparticles) in a dot phobic A- dot philic B diblock copolymer

Figure by MIT OCW.

 $< \varepsilon_{A} > = n_{A}^{2}$ $< \varepsilon_{B} > = \varepsilon_{B} \phi_{B} + \varepsilon_{D} \phi_{D}$ Effective $\varepsilon_{D} \phi_{D}$?

Ternary Nanocomposite (2 types of particles) Demonstrate Control of Particle Location

PS-PEP + SiO₂-R₂ ($\phi \sim 0.04$) + Au-S-C₁₈H₃₇ ($\phi \sim 0.04$) Cross sectional TEM

Image removed due to copyright restrictions.

Please see Fig. 2 in Bockstaller, Michael R., et al. "Size-Selective Organization of Enthalpic Compatibilized Nanocrystals in Ternary Block Copolymer/Particle Mixtures." *JACS* 125 (2003): 5276-5277.

Au $\langle d \rangle = 3 \text{ nm}$ Located near the IMDSSiO2 $\langle d \rangle = 22 \text{ nm}$ Located near the domain center

M. Bockstaller et al. J. Am. Chem. Soc., 125, (2003), 1572-1573.

Self Assembled Omni-Directional Metallodielectric Mirror

Transfer Matrix Method

assumptions:

- quasistatic approximation
- effective medium theory

Image removed due to copyright restrictions.

Please see Fig. 3 in Bockstaller, Michael R., et al. "Metallodielectric Photonic Crystals Based on Diblock Copolymers." *Advanced Materials* 13 (December 3, 2001): 1783-1786.

✓ effective medium model
 → red shift of reflectance

 Omnidirectional Reflector predicted for f=0.2

Block Copolymers Photonic Crystals Towards Self-Assembled Active Optical Elements

"Make it *do something*..."

Variation of temperature (dn/dT, χ_{AB}) Concentration of solvent (swelling and χ_{AB}) Mechanical strain (layer spacing) Polyelectrolyte gel (layer spacing and index)

Thermochromism

Courtesy of J. S. Yoon. Used with permission.

Thermochromism

• Experiment vs. Theory dn/dT < 0520 Peak Wavelength (nm) (Cumene: -5.68x10⁻⁴/K, PS/PI: -1.27x10⁻⁴/K) 510 500 490 $d \sim T^{-1/3}$ χ_{PS-PI} decreases with Temp 480 470 Theory - n(T) Theory-d(T) 460 Theory accounts for Theory-n(T), d(T) the measurements Experimental 450 140 120 20 40 60 80 100 Temperature (\mathcal{K})

J.S. Yoon, unpublished

Courtesy of J. S. Yoon. Used with permission.

Self-Assembled Responsive Reflectors

Mechanochromic BCP Photonic Gels (MW: 5x10⁵ ~ 15x 10⁵ g/mol)

lamellar PS-b-PI BCP
neutral plasticizer (DOP or cumene)

 PS-b-PI (480k/360k)

Courtesy of J. S. Yoon. Used with permission.

Mechanochromism

Tensile/compressive strain

Courtesy of J. S. Yoon. Used with permission.

Solvatochromism

• Use a solvent to change layer spacings d_{LAM}

- ***** Layers shrink as ϕ_p increases during solvent evaporation
- ***** Layers expand as χ_{PS-PI} increases during solvent evaporation

Swollen Gel

 $\phi_2 > \phi_1$

Courtesy of J. S. Yoon. Used with permission.

 $\phi_1 > \phi_{ODC}$

Solvatochromism

Courtesy of J. S. Yoon. Used with permission. Wavelength (nm)