Lecture 9 Thermal Notes, 3.054

Thermal Properties of Foams

- Closed cell foams widely used for thermal insulation
- Only materials with lower conductivity are aerogels (tend to be brittle and weak) and vacuum insulation panels
- Low thermal conductivity of foam arises from:
 - $\circ~$ low volume fraction of solid
 - high volume fraction of gas with low λ
 - small cell size suppresses convection and radiation (through repeated absorption and reflection)
- Applications: buildings, refrigerated vehicles, LNE tankers
- Foams also have good thermal shock resistance since coefficient of thermal expansion of foam equals to that of the solid; plus the modulus is much lower $(\epsilon = \alpha \Delta T \qquad \sigma = E \alpha \Delta T = \sigma_f)$ \Rightarrow used as heat shields
- Ceramic foams used as firebrick ceramic has high T
 - foam low λ low heat loss
 - low heat capacity lowers energy to heat furnace to temperature
 - good thermal shock resistance

Thermal conductivity, λ

• Steady state conduction (T constant with time)

Fourier Law:
$$q = -\lambda \nabla T$$

 $1D \quad q = -\lambda \frac{dT}{dx}$
 $q = hect flux [J/(m^2/s)]$
 $\lambda = thermal conductivity [W/mK]$
 $\nabla T = temperature gradient$
 $= i\frac{\partial T}{\partial x} + j\frac{\partial T}{\partial y} + k\frac{\partial T}{\partial z}$

• Non-steady heat conduction (T varies with time t)

$$\frac{\partial T}{\partial \tau} = a \frac{\partial^2 T}{\partial x^2}$$

a = thermal diffusivity = $\frac{\lambda}{\rho C_p}$
[m²/s]

$$\begin{split} \rho &= \text{density} \\ C_p &= \text{specific heat - heat required to} \\ \text{raise the temperature of unit mass by 1°K} \\ \rho \, C_p &= \text{volumetric heat capacity [J/m³K]} \end{split}$$

• Values for λ , *a* Table 7.1

Material	Thermal conductivity λ(W/m K)	Thermal diffusivity <i>a</i> (m ² /s)
Copper (solid)	384 ^a	$8.8 imes 10^{-5}$ a
Aluminium (solid)	230 ^a	$8.9 imes 10^{-5}$ a
Alumina (solid)	25.6 ^a	$8.2 imes 10^{-6}$ a
Glass (solid)	1.1^{a}	4.5×10^{-7} a
Polyethylene (solid)	0.35 ^a	$1.7 imes10^{-7}$ a
Polyurethane (solid)	0.25 ^c	
Polystyrene (solid)	0.15 ^a	$1.0 imes 10^{-7}$ a
Air	0.025 ^a	-
Carbon dioxide	0.016 ^a	_
Trichlorofluoromethane (CCl ₃ F)	0.008 ^a	-
Oak $(\rho^*/\rho_s = 0.40)$	0.150 ^a	_
White pine $(\rho^*/\rho_s = 0.34)$	0.112 ^a	-
Balsa $(\rho^*/\rho_{\rm s}=0.09)$	0.055 ^a	-
$\operatorname{Cork}\left(\rho^*/\rho_{\rm s}=0.14\right)$	0.045 ^a	_
Polystyrene foam ($\rho^*/\rho_s = 0.025$)	0.040^{b}	$1.1 imes 10^{-6}$ b
Polyurethane foam $(\rho^*/\rho_s = 0.02)$	0.025 ^b	$9.0 imes10^{-7}$ t
Polystyrene foam ($\rho^* / \rho_s = 0.029 - 0.057$)	0.029–0.035 ^d	
Polyisocyanurate foam, (CFC-11) ($\rho^* = 32 \text{ kg/m}^3$)	0.020^{d}	
Phenolic foam, (CFC-11, CFC-113) ($\rho^* = 48 \text{ kg/m}^3$)	0.017 ^d	
Glass foam ($\rho^*/\rho_s = 0.05$)	0.050 ^d	
Glass wool $(\rho^*/\rho_s = 0.01)$	0.042^{d}	
Mineral fibre ($\rho^*/\rho_c = 4.8-32 \text{ kg/m}^3$)	0.046^{d}	

Table 7.1 Thermal conductivities and diffusivities

Data for thermal conductivity and thermal diffusivity

All values for room temperature.

References

^aHandbook of Chemistry and Physics, 66th cdn (1985–6) Chemical Rubber Co. ed. R. C. Weast.

^bPatten, G. A. and Skochdopole, R. E. (1962) Mod. Plast., 39, 149.

^cSchuetz, M. A. and Glicksman, L. R. (1983) Proc. SPI 6th International Technical/ Marketing Conference, pp. 332–40.

^dGlicksman, L. R. (1994) Heat transfer in foams, in *Low Density Cellular Plastics* ed. Hilyard, N. C. and Cunningham, A. Chapman and Hall.

Gibson, L. J., and M. F. Ashby. *Cellular Solids: Structure and Properties*. 2nd ed. Cambridge University Press, © 1997. Table courtesy of Lorna Gibson and Cambridge University Press.

Thermal diffusivity, a

• Materials with a high value of *a* rapidly adjust their temperature to that of surroundings, because they conduct hear rapidly in comparison to their volumetric heat capacity; do not require much energy to reach thermal equilibrium

e.g. Cu $a = 112 \times 10^{-6} \text{ m}^2/\text{s}$ nylon $a = 0.09 \times 10^{-6} \text{ m}^2/\text{s}$ wood $a = 0.082 \times 10^{-6} \text{ m}^2/\text{s}$

Thermal conductivity of a foam, λ^* .

 $\begin{array}{l} \lambda^{*} - \text{contributions from} - \text{conduction through solid, } \lambda^{*}_{s} \\ - \text{conduction through gas, } \lambda^{g}_{g} \\ - \text{convection within cells, } \lambda^{*}_{c} \\ - \text{radiation through cell walls and across voids, } \lambda^{*}_{r} \\ \lambda^{*} = \lambda^{*}_{s} + \lambda^{*}_{a} + \lambda^{*}_{c} + \lambda^{*}_{r} \end{array}$

- Conduction through solid: $\lambda_s^* = \eta \lambda_s(\rho^*/\rho_s)$ $\eta = \text{efficiency factor} \sim 2/3$
- Conduction through gas: $\lambda_g^* = \lambda_g (1 \rho^* / \rho_s)$

For example, 2.5% dense closed-cell polystyrene foam:

$$\begin{split} \lambda^* &= 0.040 \text{ W/mK}; \ \lambda^*_s = 0.15 \text{ W/mK}; \ \lambda^*_g = 0.025 \text{ W/mK} \text{ (air} \\ \lambda^*_s + \lambda^*_g = 2/3 \ (0.15)(0.025) + (0.025)(0.975) \\ &= 0.003 + 0.024 \\ &= 0.027 \ W/mK \end{split}$$

- Most of conductivity comes from conduction through gas
- Foams for isolation blown with low λ_g gases
- Problem with aging low λ_g gases diffuse out of foam over time, air diffuses in; $\lambda_g^* \uparrow$

Convection within the cell

hot

COD

- Density changes buoyancy forces
- Also have viscous forces from drag of gas as it moves past cell wall

Convection is important when Rayleigh number > 1000

$$R_{a} = \frac{\rho g \beta \Delta T_{c} l^{3}}{\mu a} \qquad \begin{array}{l} \rho = \text{density of gas} \\ g = \text{grav. acceleration} \\ \beta = \text{volume expansion} \\ \text{for a gas} = 1/T \text{ (isobaric)} \\ \mu = \text{dynamic viscosity of gas} \\ a = \text{thermal diffusion} \end{array}$$

Convection

For
$$R_a = 1000$$
 air $p = p_{\text{atm}}$ $T = \text{room temp}$ $\beta = 1/T = 1/300 (°K^{-1}).$
 $\Delta T_c = 1^{\circ}K$ $\mu_{\text{air}} = 2 \times 10^{-5} \text{ Pa} \cdot \text{s}$ $\rho_{\text{air}} = 1.2 \text{ kg/m}^3$
 $a_{\text{air}} = 2.0 \times 10^{-5} m^2/s$
 $\Rightarrow l = 20 \text{ mm}$

- Convection important if cell size > 20 mm
- Most foams: cell size $< 1 \text{ mm} \Rightarrow$ convection negligible

Radiation

- Hect flux passing by radiation, q_r^0 , from surface at temperature T_1 , to one at a lower temperature T_0 , with a vacuum between them, is:
 - $q_r^0 = \beta_1 \, \sigma (T_1^4 T_0^4)$ Stefan's law
 - $\sigma = {\rm Stefan's\ constant} = 5.67 \times 10^{-8} \ {\rm W/m^2\ K^4}$
 - $\beta_1 = \text{constant} (< 1)$ describing emissivity of the surfaces (emitted radiant flux per unit area of sample relative to black body radiator at same temperature and conditions; black body absorbs all energy; black body emissivity =1)

Radiation

- If put foam between two surfaces, heat flux is reduced, since radiation is absorbed by the solid and reflected by cell walls
- Attenuation $q_r = q_r^0 \exp(-K^*t^*)$ Beer's law $K^* =$ extinction coefficient for foam $t^* =$ thickness of foam
- For optically thin walls and struts $(t < 10 \mu m)$ (transparent to radiation)

$$K^* = \left(\rho^* / \rho_s\right) K_s$$

• Heat flux by radiation then:

$$q_r = \lambda_r^* \, \frac{dT}{dx}$$

$$q_r = \beta_1 \sigma (T_1^4 - T_0^4) \exp \left[-(\rho^*/\rho_s)K_s t^*\right] = \lambda_r^* \frac{dT}{dx}$$

• Obtain λ_r using some approximations

Approximations:

$$\frac{dT}{dx} \approx \frac{T_1 - T_0}{t^*} = \frac{\Delta T}{t^*}$$

$$T_1^4 - T_0^4 \approx 4 \Delta T \, \bar{T}^3 \qquad \bar{T} = \left(\frac{T_1 - T_0}{2}\right)$$

$$q_r = \beta_1 \sigma 4 \, \Delta T \, \bar{T}^3 \exp\left[-(\rho^*/\rho_s)K_s \, t^*\right] = \lambda_r^* \, \frac{\Delta T}{dx}$$

$$\lambda_r^* = 4\beta_1 \sigma \bar{T}^3 \, t^* \exp\left[-(\rho^*/\rho_s)K_s \, t^*\right]$$

$$\text{as } \rho^*/\rho_s \downarrow \quad \lambda_r^* \uparrow$$

Thermal conductivity

- Relative contributions of λ^{*}_s, λ^{*}_g, λ^{*}_r shown in Fig. 7.1
 o largest contribution λ^{*}_g
- λ^* plotted against relative density Fig. 7.2
 - $\circ\,$ minimum between ρ^*/ρ_s of 0.03 and 0.07
 - $\circ\,$ at which point λ^* only slightly larger than λ^*_s
 - $\circ\,$ at low $\rho^*/\rho_s,\,\lambda^*$ increases increasing transparency to radiation (also, walls may rupture)
 - $\circ\,$ tradeoff: as ρ^*/ρ_s goes down, λ_s^* goes down, but λ_r^* goes up

Thermal Conductivity

Gibson, L. J., and M. F. Ashby. *Cellular Solids: Structure and Properties*. 2nd ed. Cambridge University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.

Cond. Vs. Relative Density

Gibson, L. J., and M. F. Ashby. *Cellular Solids: Structure and Properties*. 2nd ed. Cambridge University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.

Cond. vs. Cell Size

Gibson, L. J., and M. F. Ashby. *Cellular Solids: Structure and Properties*. 2nd ed. Cambridge University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.

 λ^* plotted against cell size Fig. 7.3

- λ^* increases with cell size
- Radiation reflected less often

Note: aerogels

- Pore size < 100nm
- Mean free path of air at ambient pressure = 68 nm
 → average distance molecules move before collision with another molecule
- Aerogels pore size < mean free path of air reduced conduction through gas

Specific hear C_p

• Specific heat — energy required to raise temperature of unit mass by unit temperature

 $C_p^* = C_{\rm ps} \qquad [{\rm J/kg\cdot~K}]$

Thermal expansion coefficient

 $\alpha^* = \alpha_s$ (consider foam as framework)

(but if closed-cell foam cooled dramatically — gas can freeze, collapsing the cells; or if heated — gas expands, increasing the internal pressure and strains)

Thermal shock resistance

- If material subjected to sudden change in surface temperature induces thermal stresses at surface, plus cracking and spalling
- Consider material at T_1 dropped intp water at T_2 $(T_1 > T_2)$
 - \circ Surface temperature drops to T_2 , contracting surface layers
 - Thermal strain $\epsilon_T = \alpha \Delta T$
- If surface bonded to underlying block of material constrained to original dimensions

$$\sigma = \frac{E \, \alpha \Delta T}{1 - \nabla} \qquad \text{in the surface}$$

• Cracking/spalling when $\sigma = \sigma_f$

$$\Delta T = \sigma_f \frac{1-\nu}{E\alpha} = \text{critical } \Delta T \text{ to just cause cracking}$$

• For foam: (open cells)

$$\Delta T_c^* = \frac{0.2 \,\sigma_{\rm fs}(\rho^*/\rho_s)^{3/2} (1-\nu^*)}{E_s \,(\rho^*/\rho_s)^2 \alpha_s} = \frac{0.2}{(\rho^*/\rho_s)^{1/2}} \,\frac{\sigma_{\rm fs}(1-\nu)}{E_s \alpha_s} = \frac{0.2}{(\rho^*/\rho_s)^{1/2}} \,\Delta T_{cs}$$

• As foam density goes down, ΔT_c^* goes up firebrick - porous ceramic

Case study: optimization of foam density for thermal insulation

- There is an optimal foam density for a given thermal insulation problem
- Already saw λ^* has a minimum as a $f(\rho^*/\rho_s)$
- Typically, have a constraint on the foam thickness, t^* , $t^* = \text{constant}$

$$\lambda^* = \frac{2}{3} (\rho^* / \rho_s) \lambda_s + (1 - \rho^* / \rho_s) \lambda_g^* + 4\beta_1 \sigma \bar{T}^3 t^* \exp[-K_s (\rho^* / \rho_s) t^*]$$

• What is optimum ρ^*/ρ_s for a given t^* ?

$$\frac{d\lambda^*}{d(\rho^*/\rho_s)} = 0 \implies (\rho^*/\rho_s)_{\text{opt}} = \frac{1}{K_s t^*} \ln\left[\frac{4K_s\beta_1\sigma\bar{T}^3 t^{*2}}{\frac{2}{3}\lambda_s - \lambda_g}\right]$$

- As given thickness t^* increases, $(\rho^*/\rho_s)_{\text{opt}}$ decreases
- As \bar{T} increases, $(\rho^*/\rho_s)_{\rm opt}$ increases
 - e.g. coffee cup $t^* = 3$ mm $(\rho^*/\rho_s)_{\text{opt}} = 0.08$ refrigerator $t^* = 50$ mm $(\rho^*/\rho_s)_{\text{opt}} = 0.02$

(see PP slide Table 7.3 for data used in calculations)

Gibson, L. J., and M. F. Ashby. *Cellular Solids: Structure and Properties*. 2nd ed. Cambridge University Press, © 1997. Figures courtesy of Lorna Gibson and Cambridge University Press.

Case Study: Optimum Relative Density

Table 7.3 Data for optimization case study	
Extinction coefficient of solid polymer, K_s	$5.67 \times 10^4 \mathrm{m}^{-1}$
Emissivity factor, β_1	0.5
Conductivity of solid polymer, λ_s	0.22 W/m K
Conductivity of gas, λ_{g}	0.02 W/m K
Mean temperature, \overline{T}	300°K
Stefan's constant, σ	$5.67 \times 10^{-8} W/m^2 K^4$

Gibson, L. J., and M. F. Ashby. *Cellular Solids: Structure and Properties*. 2nd ed. Cambridge University Press, © 1997. Table courtesy of Lorna Gibson and Cambridge University Press.

Case study: insulation for refrigerators

- Insulation reduces energy cost, but has a cost itself
- Total cost is the cost of insulation plus the cost of energy lost by hear transfer through walls
- Objective function: minimize total cost
- given: x=thickness of insulation $\Delta T=$ temp. diff. across insulation $t_l=$ design life of refrigerator

 $C_M = \text{cost of insulation/mass}$ $C_E = \text{cost of energy / joule}$ $C_T = \text{total cost/area}$

$$C_T = x \,\rho^* C_M + \lambda \,\frac{\Delta T}{x} \,t_l C_E \qquad \text{(heat flux } q = \lambda \frac{\Delta T}{x} \,\frac{J}{m^2 s}\text{)}$$

Define: $M_1 = \frac{1}{\rho^* C_M} \qquad M_2 = \frac{1}{\lambda}$
$$\frac{C_T}{x} = \frac{1}{M_1} + \left[\frac{\Delta T}{x^2} t_l C_E\right] \frac{1}{M_2}$$

• The terms are equal when:

$$M_2 = \underbrace{\left[\frac{\Delta T}{x^2} t_l C_E\right]}_{\text{coupling constant}} M_1$$

- Family of parallel straight lines of constant value $\frac{\Delta T}{x^2} t_l C_E$
- Fig. 13.11 $\Delta T = 20^{\circ}$ x = 10mm $C_E = 0.01/\mu J$

Two lines for $t_2 = 10$ years and $t_l = 1$ month (note error in book $t_l = 10$ years line should be moved over)

• Also plotted a set of curved contours - plots of C_T/x :

 $\circ\,$ As move up and to the right of plot, the value of C_T/x decreases

• For $t_l = 10$ years \Rightarrow phenolic foam $\rho^* = 0.035 \text{ Mg/m}^3$ For $t_l = 1 \text{ month } \Rightarrow \text{ EPS}$ $\rho^* = 0.02 \text{ Mg/m}^3$ PP $\rho^* = 0.02 \text{ Mg/m}^3$

Case Study: Insulation for Refrigerators

Gibson, L. J., and M. F. Ashby. *Cellular Solids: Structure and Properties*. 2nd ed. Cambridge University Press, © 1997. Figures courtesy of Lorna Gibson and Cambridge University Press.

3.054 / 3.36 Cellular Solids: Structure, Properties and Applications Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.