
Lecture 4 Honeycombs Notes, 3.054  

Honeycombs-In-plane behavior 

• Prismatic cells

• Polymer, metal, ceramic honeycombs widely available

• Used for sandwich structure cores, energy absorption, carriers for catalysts

• Some natural materials (e.g. wood, cork) can be idealized as honeycombs

• Mechanisms of deformation and failure in hexagonal honeycombs parallel those in foams

◦ simpler geometry — unit cell — easier to analyze

• Mechanisms of deformation in triangular honeycombs parallel those in 3D trusses (lattice materials)

Stress-strain curves and Deformation behavior: In-Plane 

Compression 

• 3 regimes – linear elastic − bending
– stress plateau − buckling

− yielding  
− brittle crushing  

– densification − cell walls touch

• Increasing t/l ⇒ E∗ ↑ σ∗ ↑ ED ↓
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Honeycomb Geometry 

           
          

Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge
University Press, ��1997. Figure courtesy of Lorna Gibson and Cambridge University Press.
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Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge
University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.
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Deformation 
mechanisms 

Bending 
X2 Loading 

Buckling 

Bending 
X1 Loading 

Bending 
Shear  
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Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge
University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.



           Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge
          University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.

Plastic collapse in an 
aluminum honeycomb 
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Stress-Strain Curve 
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Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge
University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.



Tension 

• Linear elastic � bending

• Stress plateau � exists only if cell walls yield
� no buckling in tension 
� brittle honeycombs fracture in tension 

Variables affecting honeycomb properties � � 
t (h +ρ l l   ∗ 2) 2 t • Relative density = =

h
 √ regular hexagons 

ρs 2 cos θ ( sin θ) 3 ll
  

• Solid cell wall properties: ρs, Es, σys, σfs

• Cell geometry: h/l, θ



In-plane properties 

Assumptions: 

• t/l small ((ρ∗/ρs) small) — neglect axial and shear contribution to deformationc 

• Deformations small — neglect changes in geometry

• Cell wall — linear elastic, isotropic

Symmetry 

• Honeycombs are orthotropic — rotate 180◦ about each of three mutually perpendicular axes and
structure is the same

Linear elastic deformation ⎡⎤⎡ ⎤⎡  ⎤  

⎢⎢ ⎥⎥ 

E1 1/E1 −ν21/E2 −ν31/E2 0 0 0 σ1
− ⎢− 

⎢⎢⎢ ⎥⎥⎢⎢ ⎥ ⎢⎥ ⎥⎥⎥−ν32/E3E2 ν12/E1 1/E2 0 0 0  σ2 ⎢⎢⎢⎢  
−ν23/E2 −1/E3E3 ν13/E1 0 0 0  σ3⎥⎥⎥ ⎥⎢  ⎥⎥⎥⎦=  ⎢⎢⎣ 0 0 0 1/G23 0 0 

0 0 0 0 1/G13 0 
⎢⎢⎣ 

⎥⎥⎦E  σ4 
σ5 

4 ⎣ ⎦E 5 
E6 0 0 0 0 0 1/G12 σ6
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• Matrix notation: E1 = E11 E4 = γ23 σ1 = σ11 σ4 = σ23
E2 = E22 E5 = γ13 σ2 = σ22 σ5 = σ13
E3 = E33 E6 = γ12 σ3 = σ33 σ6 = σ12

• Inplane (x1 � x2): 4 independent elastic constants:
E1 E2 ν12 G12

ν ν
and compliance matrix symmetric 

� 12 � 21
= (reciprocal relation) 

E1 E2

[ Ej
notation for Poisson’s ratio: νij = 

�
Ei

]

Young’s modulus in x1 direction 

P  
σ1 = 

(n + l sin θ) b  
Unit cell in x1 direction: 2l cos θ δ sin θ 
Unit cell in x2 direction: h + 2l sin θ E1 = 

l cos θ 
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In-Plane Deformation:  
Linear Elasticity 

Figure removed due to copyright restrictions. See Figure 5: L. J. Gibson,
M. F. Ashby, et al. "The Mechanics of Two-Dimensional Cellular Materials."
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http://rspa.royalsocietypublishing.org/content/382/1782/25.abstract


M diagram: 2 cantilevers of length l/2 

P sin θ(l/2)3
δ = 2 · 

3Es I 
2 P l3 sin θ 

= 
24 Es I 

P l3 sin θ b t3
δ = I = 

12 Es I 12 

Combining:  σ1 P l cos θ 
E 1

∗
 = = 

E1 (h + l sin θ) b δ sin θ 
P l cos θ b t3

= 12 E
(h + l sin θ) b P  s

l3 sin2 θ 12 ( ) regular 
t 3

   cos θ 4 t 3

E 1
∗
 = Es = E   hexagons 

s
l (h/l + sin θ) sin2 θ 

√
3

( )
l h/l=1 θ = 30◦

↑ ↑ ↑ 
solid relative cell geometry 

property density 
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Poisson’s ratio for loading in x1 direction 

 E
ν∗ = � 212 E1

δ sin θ δ cos θ 
E1 = E2 = (lengthens)

l cos θ h + l sin  θ

 δ cos θ l cos  θ cos2 θ
ν12
∗

 = =
h + l sin θ δ

(
 sin θ 

l
(h/l + sin θ) sin θ 

• ν∗ 
12 depends ONLY on cell geometry (h/l, θ), not on Es, t/l

• Regular hexagonal cells: ν12∗  = 1 

• ν can be negative for θ < 0

  3/4 e.g. h/l=2 θ = �30◦ ν12 ∗  = = �1(3/2)(�1/2)  

 E∗ 
2 ν12

∗ G12
∗

 

• Can be found in similar way; results in book
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Compressive strength (plateau stress) 

• Cell collapse by:

(1) elastic buckling (2) plastic yielding (3) brittle crushing 

• localization of yield •  p aks   e and valleys corre• buckling of vertical struts • as deformation progresses, spond  to fracture of indithroughout honeycomb
propagation of failure band vidual cell walls 

Plateau stress: elastic buckling, σe∗l
• Elastomeric honeycombs — cell collapse by elastic buckling of walls of length h when loaded in x2
direction

• No buckling for σ1; bending of inclined walls goes to densification

n=end constraint factor 
Euler buckling load 

pinpin fixedfixed 
n2 π2 E

 sI n=1 n=2Pcr =
h2
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Elastic Buckling 

Figure removed due to copyright restrictions. See Figure 7: L. J. Gibson,
M. F. Ashby, et al. "The Mechanics of Two-Dimensional Cellular Materials."
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http://rspa.royalsocietypublishing.org/content/382/1782/25.abstract


• Here, constraint n depends on stiffness of adjacent inclined members

• Can find elastic line analysis (see appendix if interested)

• Rotational stiffness at ends of column, h, matched to rotational stiffness of inclined members

• Find n/l=1 1.5 2 
n=0.686 0.760 0.860 

Pcr n2 π2 Es bt3
and (σel 

∗ )2 = = 
2l cos θ b h2 2l cos θ b 12 

n2π2 (t/l)3
(σel 

∗ )2 = Es
24 (h/l)2 cos θ 

regular hexagons: ∗ )2 = 0.22 Es(t/l)
3(σel √ ∗and since E2 = 4/ 3 Es(t/l)

3 = 2.31 Es(t/l)
3

strain at buckling (E∗ )2 = 0.10, for regular hexagons, independent of Es, t/l el
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Plateau stress: plastic yielding, σpl∗

• Failure by yielding in cell walls

• Yield strength of cell walls = σys
• Plastic hinge forms when crosssection fully yields

• Beam theory — linear elastic σ = My
I 

• Once stress outer fiber=σys, yielding begins and then progresses through the section, as the load
increases

as P ↑  

• When section fully yielded (right figure), form plastic “hinge”

• Section rotates like a pin
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Plastic Collapse 

Figure removed due to copyright restrictions. See Figure 8: L. J. Gibson,
M. F. Ashby, et al."The Mechanics of Two-Dimensional Cellular Materials."
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http://rspa.royalsocietypublishing.org/content/382/1782/25.abstract


• Moment at ( for)(mat)ion of plastic hinge (plastic moment, Mp):
b t t σys b t

2

Mp = σys = 
2 2 4 

• Applied moment, from applied stress

2Mapp � PL sin θ = 0 

P l sin θ 
Mapp = 

2 
P 

σ l sin θ
1 =     

(h + l sin θ) b Mapp = σ1 (h + l sin θ) b
2 

• Plastic  collapse of honeycomb at (σpl∗  )1, when Mapp = Mp

l sin θ b t) 2

( ∗ )1 (h )
σpl + l sin θ) )b) = σys

 2  4 2 
t 2 1

(σpl
∗

 )1 = σys
( )
l 2(h/l + sin θ) sin θ 

2

  ∗ 2 t
regular hexagons: (σpl )1 = σ

 ys

( )
 

similarly, (σpl
∗

 )2 = σys
( ) 3 l
t 2 1

l 2 cos2 θ 
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• For thin-walled honeycombs, elastic buckling can precede plastic collapse ( for σ2)
∗ )2• Elastic buckling stress = plastic collapse stress (σel ∗ )2 = (σpl 

n2π2 (t/l)3 σys(t/l)
2

Es  = 
24 (h/l)2 cos θ	 2 cos2 θ 

12 (h/l)2 σys
(t/l)critical = 

n2 π2 cos θ Es

σys
regular hexagons:(t/l)critical = 3 

Es

• E.g. metals σys/Es ∼ .002 (t/l)critical ∼ 0.6% 

◦ most metal honeycomb denser than this
polymer σys/Es ∼ 3 − 5% (t/l)critical ∼ 10-15%

◦ low density polymers with yield point may buckle before yield
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Plastic stress: brittle crushing, (σcr
∗ )1

• Ceramic honeycombs — fail in brittle manner

• Cell wall bending — stress reaches modulus of rapture — wall fracture loading in x1 direction:

P = σ1 (h+ l sin θ) b σfs = modulus of rupture of cell wall

P l sin θ σ1 (h+ l sin θ) b l sin θ
Mmax. applied = =

2 2

Moment at fracture, Mf (1 t)(2
f s

) σ 2
fs b t

M = σf b t =
2 2 3 6

t 2 1
(σc
∗
r)1 = σfs

( )
l 3 (h/l + sin θ) sin θ

4 t 2

regular hexagons: (σc
∗
r)1 = σfs

9

(
l

)
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Brittle Crushing 
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Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge
University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.



Tension  

• No elastic buckling

• Plastic plateau stress approx. same in tension and compression
(small geometric difference due to deformation)

• Brittle honeycombs: fast fracture

Fracture toughness 

Assume: • crack length large relative to cell size (continuum assumption)
• axial forces can be neglected
• cell wall material has constant modulus of rapture, σfs

Continuum: crack of length 2c in a linear elastic solid material normal to a remote tension stress 
σ1 creates a local stress field at the crack tip 

√ 
σ1 π c 

σlocal = σl = √ 
2π r 
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Fracture Toughness 
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Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge
University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.
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Honeycomb: cell walls bent — fail when applied moment = fracture moment 

Mapp ∝ P l on wall A 
√ 

σ1 c l2 b 
Mapp ∝ P l ∝ σl l2 b ∝ √ ∝ σfs b t

2

l  
2t l 

(σ ∗ 
f )1 ∝ σfs

l c 
√ t 2 √ 

∗ ∗ KI = σf πc = c σfs lC l 
depends on cell size, l!  

c=constant 

Summary: hexagonal honeycombs, in-plane properties 
∗ ∗ ∗ G∗• Linear elastic moduli: E1 E2 ν12 12 

• Plateau stresses ∗ )2 elastic buckling (σel 
(compression) ∗ plastic yield σpl

∗σ brittle crushing cr 
∗• Fracture toughness brittle fracture KIC 

(tension) 
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Honeycombs: In-plane behavior — triangular cells  

• Triangulated structures  trusses

• Can analyze as pinjointed (no moment at joints)

• Forces in members all axial (no bending)

• If joints fixed and include bending, difference ∼ 2%

• Force in each member proportional to P

depth b into page 

P δ P l
σ ∝ ε ∝ δ axial shortening: Hooke’s law

l b l
∝
A Es

σ P l P b t E∗ s t
E ∝

ε
∝
l b δ

∝
b P l

∝ Es

( )
l

E∗ = c Es (t/l)

exact calculation: E∗ = 1.15 Es (t/l) for equilateral triangles
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Square and Triangular 
Honeycombs 
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Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge
University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.
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