Lecture 4 Honeycombs Notes, 3.054

Honeycombs-In-plane behavior

Prismatic cells
Polymer, metal, ceramic honeycombs widely available
Used for sandwich structure cores, energy absorption, carriers for catalysts
Some natural materials (e.g. wood, cork) can be idealized as honeycombs
Mechanisms of deformation and failure in hexagonal honeycombs parallel those in foams
simpler geometry unit cell easier to analyze
Mechanisms of deformation in triangular honeycombs parallel those in 3D trusses (lattice materials)

Stress-strain curves and Deformation behavior: In-Plane

Compression

3 regimes	- linear elastic	bending buckling
	stress plateau	yielding brittle crushing
	- densi cation	cell walls touch

Increasing $t / l \quad E \quad \sigma \quad \epsilon_{D}$

Honeycomb Geometry

Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge University Press, \quad [1997. Figure courtesy of Lorna Gibson and Cambridge University Press.

Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.

Deformation

 mechanismsBending X_{1} Loading

Bending Shear

Bending X_{2} Loading

Buckling

Plastic collapse in an aluminum honeycomb

Stress-Strain Curve

Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.

Tension

Linear elastic - bending
Stress plateau - exists only if cell walls yield

- no buckling in tension
- brittle honeycombs fracture in tension

Variables affecting honeycomb properties

Relative density $\quad \frac{\rho}{\rho_{s}}=\frac{\left(\frac{t}{l}\right)\left(\frac{h}{l}+2\right)}{2 \cos \theta\left(\frac{h}{l} \sin \theta\right)}=\frac{2}{\overline{3}} \frac{t}{l} \quad$ regular hexagons
Solid cell wall properties: $\rho_{s}, E_{s}, \sigma_{y s}, \sigma_{f s}$
Cell geometry: $h / l, \theta$

In-plane properties

Assumptions:
t / l small $\left(\left(\rho_{c} / \rho_{s}\right)\right.$ small $) \quad$ neglect axial and shear contribution to deformation
Deformations small neglect changes in geometry
Cell wall linear elastic, isotropic
Symmetry
Honeycombs are orthotropic rotate 180 about each of three mutually perpendicular axes and structure is the same

Linear elastic deformation

$$
\left[\begin{array}{l}
\epsilon_{1} \\
\epsilon_{2} \\
\epsilon_{3} \\
\epsilon_{4} \\
\epsilon_{5} \\
\epsilon_{6}
\end{array}\right]=\left[\begin{array}{cccccc}
1 / E_{1} & \nu_{21} / E_{2} & \nu_{31} / E_{2} & 0 & 0 & 0 \\
\nu_{12} / E_{1} & 1 / E_{2} & \nu_{32} / E_{3} & 0 & 0 & 0 \\
\nu_{13} / E_{1} & \nu_{23} / E_{2} & 1 / E_{3} & 0 & 0 & 0 \\
0 & 0 & 0 & 1 / G_{23} & 0 & 0 \\
0 & 0 & 0 & 0 & 1 / G_{13} & 0 \\
0 & 0 & 0 & 0 & 0 & 1 / G_{12}
\end{array}\right]\left[\begin{array}{c}
\sigma_{1} \\
\sigma_{2} \\
\sigma_{3} \\
\sigma_{4} \\
\sigma_{5} \\
\sigma_{6}
\end{array}\right]
$$

$$
\begin{array}{llll}
\text { Matrix notation: } & \epsilon_{1}=\epsilon_{11} & \epsilon_{4}=\gamma_{23} & \sigma_{1}=\sigma_{11} \\
\sigma_{4}=\sigma_{23} \\
\epsilon_{2}=\epsilon_{22} & \epsilon_{5}=\gamma_{13} & \sigma_{2}=\sigma_{22} & \sigma_{5}=\sigma_{13} \\
& \epsilon_{3}=\epsilon_{33} & \epsilon_{6}=\gamma_{12} & \sigma_{3}=\sigma_{33} \\
\sigma_{6}=\sigma_{12}
\end{array}
$$

In-plane $\left(x_{1}-x_{2}\right): 4$ independent elastic constants: $E_{1} \quad E_{2} \quad \nu_{12} \quad G_{12}$
and compliance matrix symmetric $\quad \frac{-\nu_{12}}{E_{1}}=\frac{-\nu_{21}}{E_{2}} \quad$ (reciprocal relation)
[notation for Poisson s ratio: $\left.\nu_{i j}=\frac{-\epsilon_{j}}{\epsilon_{i}}\right]$

Young's modulus in x_{1} direction

Unit cell in x_{1} direction: $2 l \cos \theta$
Unit cell in x_{2} direction: $h+2 l \sin \theta$

$$
\begin{gathered}
\sigma_{1}=\frac{P}{(n+l \sin \theta) b} \\
\epsilon_{1}=\frac{\delta \sin \theta}{l \cos \theta}
\end{gathered}
$$

In-Plane Deformation: Linear Elasticity

M diagram: 2 cantilevers of length $1 / 2$

$$
\begin{aligned}
\delta & =2 \frac{P \sin \theta(l / 2)^{3}}{3 E_{s} I} \\
& =\frac{2 P l^{3} \sin \theta}{24 E_{s} I} \\
\delta & =\frac{P l^{3} \sin \theta}{12 E_{s} I} \quad I=\frac{b t^{3}}{12}
\end{aligned}
$$

Combining: $\quad E_{1}=\frac{\sigma_{1}}{\epsilon_{1}}=\frac{P}{(h+l \sin \theta) b} \frac{l \cos \theta}{\delta \sin \theta}$

$$
=\frac{P}{(h+l \sin \theta) b} \frac{l \cos \theta}{P l^{3} \sin ^{2} \theta} 12 E_{s} \frac{b t^{3}}{12}
$$

$$
E_{1}=E_{s}\left(\frac{t}{l}\right)^{3} \frac{\cos \theta}{(h / l+\sin \theta) \sin ^{2} \theta}=\frac{4}{\overline{3}}\left(\frac{t}{l}\right)^{3} E_{s}
$$

regular
hexagons
$\mathrm{h} / \mathrm{l}=1 \theta=30$

> solid property $\begin{aligned} & \text { relative } \\ & \text { density }\end{aligned}$ cell geometry

Poisson's ratio for loading in x_{1} direction

$\epsilon_{1}=\frac{\delta \sin \theta}{l \cos \theta} \quad \epsilon_{2}=\frac{\delta \cos \theta}{h+l \sin \theta} \quad$ (lengthens)
$\nu_{12}=\frac{\delta \cos \theta}{h+l \sin \theta}\left(\frac{l \cos \theta}{\delta \sin \theta}\right)=\frac{\cos ^{2} \theta}{(h / l+\sin \theta) \sin \theta}$
ν_{12} depends ONLY on cell geometry (h/l, θ), not on $E_{s}, \mathrm{t} / \mathrm{l}$
Regular hexagonal cells: $\nu_{12}=1$
ν can be negative for $\theta<0$
e.g. $\mathrm{h} / \mathrm{l}=2 \quad \theta=-30 \quad \nu_{12}=\frac{3 / 4}{(3 / 2)(-1 / 2)}=-1$
$\begin{array}{lll}\mathbf{E}_{2} & \nu_{12} & \mathbf{G}_{12}\end{array}$
Can be found in similar way; results in book

Compressive strength (plateau stress)

Cell collapse by:
(1) elastic buckling

buckling of vertical struts throughout honeycomb
(2) plastic yielding

localization of yield as deformation progresses, propagation of failure band
(3) brittle crushing

peaks and valleys correspond to fracture of individual cell walls

Plateau stress: elastic buckling, $\sigma_{e l}$
Elastomeric honeycombs cell collapse by elastic buckling of walls of length h when loaded in x_{2} direction

No buckling for σ_{1}; bending of inclined walls goes to densification

Euler buckling load

$$
P_{c r}=\frac{n^{2} \pi^{2} E_{s} I}{h^{2}}
$$

$\mathrm{n}=$ end constraint factor

$$
\int_{\substack{\text { pin-pin } \\ \mathrm{n}=1}}^{\substack{\text { xed- } \\ \mathrm{n}=2}}
$$

Elastic Buckling

Figure removed due to copyright restrictions. See Figure 7: L. J. Gibson, M. F. Ashby, et al. "The Mechanics of Two-Dimensional Cellular Materials."

Here, constraint n depends on sti ness of adjacent inclined members
Can nd elastic line analysis (see appendix if interested)
Rotational sti ness at ends of column, h, matched to rotational sti ness of inclined members
Find

$$
\begin{array}{ccc}
\mathrm{n} / \mathrm{l}=1 & 1.5 & 2 \\
\mathrm{n}=0.686 & 0.760 & 0.860
\end{array}
$$

and $\left(\sigma_{e l}\right)_{2}=\frac{P_{c r}}{2 l \cos \theta b}=\frac{n^{2} \pi^{2} E_{s}}{h^{2} 2 l \cos \theta b} \frac{b t^{3}}{12}$

$$
\left(\sigma_{e l}\right)_{2}=\frac{n^{2} \pi^{2}}{24} E_{s} \frac{(t / l)^{3}}{(h / l)^{2} \cos \theta}
$$

$$
\begin{aligned}
\text { regular hexagons: } & \left(\sigma_{e l}\right)_{2}=0.22 E_{s}(t / l)^{3} \\
\text { and since } & E_{2}=4 / \overline{3} E_{s}(t / l)^{3}=2.31 E_{s}(t / l)^{3} \\
\text { strain at buckling } & \left(\epsilon_{e l}\right)_{2}=0.10, \text { for regular hexagons, independent of } E_{s}, \mathrm{t} / \mathrm{l}
\end{aligned}
$$

Plateau stress: plastic yielding, $\sigma_{p l}$

Failure by yielding in cell walls
Yield strength of cell walls $=\sigma_{y s}$
Plastic hinge forms when cross-section fully yields
Beam theory linear elastic $\sigma=\frac{M y}{I}$

Once stress outer ber $=\sigma_{y s}$, yielding begins and then progresses through the section, as the load increases

When section fully yielded (right gure), form plastic hinge
Section rotates like a pin

Plastic Collapse

Figure removed due to copyright restrictions. See Figure 8: L. J. Gibson, M. F. Ashby, et al."The Mechanics of Two-Dimensional Cellular Materials."

Moment at formation of plastic hinge (plastic moment, M_{p}):
$M_{p}=\left(\sigma_{y s} \frac{b t}{2}\right)\left(\frac{t}{2}\right)=\frac{\sigma_{y s} b t^{2}}{4}$
Applied moment, from applied stress
$2 M_{a p p}-P L \sin \theta=0$
$M_{a p p}=\frac{P l \sin \theta}{2}$
$\sigma_{1}=\frac{P}{(h+l \sin \theta) b}$

Plastic collapse of honeycomb at $\left(\sigma_{p l}\right)_{1}$, when $M_{a p p}=M_{p}$
$\left(\sigma_{p l}\right)_{1}(h+l \sin \theta) \not b \frac{l \sin \theta}{2}=\sigma_{y s} \frac{\not b t^{2}}{\not 42}$
$\left(\sigma_{p l}\right)_{1}=\sigma_{y s}\left(\frac{t}{l}\right)^{2} \frac{1}{2(h / l+\sin \theta) \sin \theta}$
regular hexagons: $\left(\sigma_{p l}\right)_{1}=\frac{2}{3} \sigma_{y s}\left(\frac{t}{l}\right)^{2}$
similarly, $\left(\sigma_{p l}\right)_{2}=\sigma_{y s}\left(\frac{t}{l}\right)^{2} \frac{1}{2 \cos ^{2} \theta}$

For thin-walled honeycombs, elastic buckling can precede plastic collapse (for σ_{2})
Elastic buckling stress $=$ plastic collapse stress $\left(\sigma_{e l}\right)_{2}=\left(\sigma_{p l}\right)_{2}$

$$
\begin{aligned}
\frac{n^{2} \pi^{2}}{24} E_{s} \frac{(t / l)^{3}}{(h / l)^{2} \cos \theta} & =\frac{\sigma_{y s}(t / l)^{2}}{2 \cos ^{2} \theta} \\
(t / l)_{\text {critical }} & =\frac{12(h / l)^{2}}{n^{2} \pi^{2} \cos \theta}\left(\frac{\sigma_{y s}}{E_{s}}\right)
\end{aligned}
$$

regular hexagons: $(t / l)_{\text {critical }}=3 \frac{\sigma_{y s}}{E_{s}}$
E.g. metals $\sigma_{y s} / E_{s} \quad .002 \quad(t / l)_{\text {critical }} \quad 0.6 \%$
most metal honeycomb denser than this polymer $\sigma_{y s} / E_{s} \quad 3 \quad 5 \%(t / l)_{\text {critical }} \quad 10-15 \%$
low density polymers with yield point may buckle before yield

Plastic stress: brittle crushing, $\left(\sigma_{c r}^{*}\right)_{1}$

- Ceramic honeycombs - fail in brittle manner
- Cell wall bending - stress reaches modulus of rapture - wall fracture loading in x_{1} direction: $P=\sigma_{1}(h+l \sin \theta) b \quad \sigma_{f s}=$ modulus of rupture of cell wall $M_{\text {max. applied }}=\frac{P l \sin \theta}{2}=\frac{\sigma_{1}(h+l \sin \theta) b l \sin \theta}{2}$

Moment at fracture, M_{f}

$$
\begin{aligned}
& M_{f}=\left(\frac{1}{2} \sigma_{f s} b \frac{t}{2}\right)\left(\frac{2}{3} t\right)=\frac{\sigma_{f s} b t^{2}}{6} \\
& \left(\sigma_{c r}^{*}\right)_{1}=\sigma_{f s}\left(\frac{t}{l}\right)^{2} \frac{1}{3(h / l+\sin \theta) \sin \theta}
\end{aligned}
$$

regular hexagons: $\left(\sigma_{c r}^{*}\right)_{1}=\frac{4}{9} \sigma_{f s}\left(\frac{t}{l}\right)^{2}$

Brittle Crushing

Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.

Tension

No elastic buckling
Plastic plateau stress approx．same in tension and compression
（small geometric di erence due to deformation）
Brittle honeycombs：fast fracture

Fracture toughness

Assume：\quad crack length large relative to cell size（continuum assumption） axial forces can be neglected cell wall material has constant modulus of rapture，$\sigma_{f s}$
Continuum：crack of length 2c in a linear elastic solid material normal to a remote tension stress σ_{1} creates a local stress eld at the crack tip

$$
\sigma_{\text {local }}=\sigma_{l}=\frac{\sigma_{1} \overline{\pi c}}{\overline{2 \pi r}}
$$

いしし

Fracture Toughness

Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.

Honeycomb: cell walls bent fail when applied moment $=$ fracture moment

$$
\begin{aligned}
& M_{a p p} \quad P l \text { on wall A } \\
& M_{a p p} \quad P l \quad \sigma_{l} l^{2} b \quad \frac{\sigma_{1} \bar{c} l^{2} b}{\bar{l}} \quad \sigma_{f s} b t^{2} \\
& \left(\sigma_{f}\right)_{1} \quad \sigma_{f s}\left(\frac{t}{l}\right)^{2} \sqrt{\frac{l}{c}} \\
& K_{I C}=\sigma_{f} \quad \overline{\pi c}=c \sigma_{f s}\left(\frac{t}{l}\right)^{2} \quad \bar{l} \quad \text { depends on cell size, } 1 \text { ! } \\
& \mathrm{c}=\text { constant }
\end{aligned}
$$

Summary: hexagonal honeycombs, in-plane properties
Linear elastic moduli: $\quad \begin{array}{llll}E_{1} & E_{2} & \nu_{12} & G_{12}\end{array}$

Plateau stresses	$\left(\sigma_{e l}\right)_{2}$	elastic buckling
(compression)	$\sigma_{p l}$	plastic yield
	$\sigma_{c r}$	brittle crushing

Fracture toughness $\quad K_{I C}$ brittle fracture (tension)

Honeycombs: In-plane behavior - triangular cells

depth b into page

Triangulated structures - trusses
Can analyze as pin-jointed (no moment at joints)
Forces in members all axial (no bending)
If joints xed and include bending, di erence 2%
Force in each member proportional to P

$\sigma \propto \frac{P}{l b} \quad \epsilon \propto \frac{\delta}{l} \quad \delta \propto \frac{P l}{A E_{s}}$ axial shortening: Hooke's law
$E^{*} \propto \frac{\sigma}{\epsilon} \propto \frac{P}{l b} \frac{l}{\delta} \propto \frac{P}{b} \frac{b t E_{s}}{P l} \propto E_{s}\left(\frac{t}{l}\right)$
$E^{*}=c E_{s}(t / l)$
exact calculation: $E^{*}=1.15 E_{s}(t / l)$ for equilateral triangles

Square and Triangular Honeycombs

Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge
University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.

MIT OpenCourseWare
http://ocw.mit.edu
3.054 / 3.36 Cellular Solids: Structure, Properties and Applications

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

