
 
 

 
 
 

  
  

 

Plant Stems with  
Radial Density Gradients  

Coconut Palm  
http://en.wikipedia.org/wiki/ 

Image:Palmtree_Curacao.jpg 

http://en.wikipedia.org/wiki/


 

 

 

 

 
 

 Palm: Density Gradient  
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Palm Stem: Density Gradient  

Rich, PM (1987) Bot.Gazette 148, 42-50.  3 



 
 

 
 

 
  

Palm Stem:  
Density at Breast Height  

Densities 
of common 
woods 

A single mature palm has a similar range of  
density as nearly all species of wood combined  

4
Rich, PM (1987) Bot.Gazette 148, 42-50. 



 
 

   

 

 

 

 
  

   
 

 

  
 

 
 

 

Palm Stem: Density Gradient  
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Iriartea  
gigantea:  
ρmin ≈ 0 

ρ* ⎛ r ⎞ 
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ro is the outer radius 5 
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6Rich, PM (1987) Bot.Gazette 148, 42-50. 
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Palm Properties 
• Prismatic cells in palm deform axially (like 

wood loaded along the grain) 

• If Es was constant, would expect: E* = Es (ρ* ρs ) 

)2.5 • But measure: E* = C (ρ* ρmax 

• Similarly with strength 
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Palm Properties 

•  Es = 0.1-3.0 GPa in low density palm tissue 
from Washingtonia robusta (Rueggeberg et 
al., 2008)  

•  Estimate in dense tissue (E* = 30 GPa; ρ*= 
1000 kg/m3) Es = 45 GPa 

•  Large variation in Es due to additional 
secondary layers in cell walls of denser tissue 
and increased alignment of cellulose 
microfibrils in those layers 
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Palm: Mechanical Efficiency 
Bending Stiffness 

9 

ρ =
r
ro

⎛
⎝⎜

⎞
⎠⎟

n

ρmax

E = C
ρ

ρmax

⎛
⎝⎜

⎞
⎠⎟

m

= C
r
ro

⎛
⎝⎜

⎞
⎠⎟

mn

EI( )gradient =
Cπro

4

mn + 4

EI( )gradient
EI( )uniform

=
4

mn + 4
n + 2

2
⎛
⎝⎜

⎞
⎠⎟
m

Iriartea gigantea: n = 2, m = 2.5 
 

(EI)gradient/(EI)uniform = 2.5 



Palm: Mechanical Efficiency 
Bending Stress Distribution 

10 

σ (y) = Eε = Eκ y

σ (r,θ) = C
r
ro

⎛
⎝⎜

⎞
⎠⎟

mn

κ r cosθ ∝ rmn+1

I. gigantea: n =2, m = 2.5  

σ ∝ r6



Palm: Mechanical Efficiency 
Bending Strength Distribution 
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Palm bending stress, strength 

Stress distribution 
Strength distribution 



Figure sources 

Sources for all figures in:  
Cellular Materials in Nature and Medicine (2010) 



Circular sections with radial density gradients: Palm Stems

• Palms can grow up to 20-40m - largest stresses from hurricane winds

• Unlike trees, palms do not have a cambium layer at the periphery, with dividing cells to allow increase
in diameter as palm grows in height

• Instead, diameter of palm roughly constant as it grows in height

• Increasing stress resisted by cell walls increasing in thickness

• Add additional layers of secondary cell wall

• Produces radial density gradient

– Density higher at periphery and at base of stem

– A single stem can have densities from 100-1000 kg/m3, nearly spanning the density range of all
woods (balsa ∼200 kg/m3 → lignum vitae ∼ 1300 kg/m3)

• Specimen of palm taken from different radial positions tested in bending (Paul Rich, 1980s)

• Found Eaxial
∗ = C ′ ρ∗ 2.46

• Might expect Eaxial
∗ ∝ ρ - vascular bundles honeycomb-like



• But additional cell wall layers change Es: data Es=0.1-3 GPa

• Also: lower density palm has more ground tissue (parenchyma) with E∝ ρ if at high turgor, but
E∝ ρ2 if at low turgor. (bending specimens dry)

• Modulus of rupture σ∗ = C ′′ ρ∗
2.05

• Radial density gradient increases flexual rigidity

• Compare (EI) with density gradient to (EI) of section of same mass+radius but uniform density

• For Iriartea gigantea:
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Stress and Strength distribution
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Figure: if max normal stress at r = r0 is σ = σ∗ then bending stress distribution closely follows strength
distribution!
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