Lecture 16-17, Sandwich Panel Notes, 3.054

Sandwich Panels

- Two stiff strong skins separated by a lightweight core
- Separation of skins by core increases moment of inertia, with little increase in weight
- Efficient for resisting bending and buckling
- Like an I beam: faces = flanges - carry normal stress
core $=$ web - carries shear stress
- Examples: engineering and nature
- Faces: composites, metals

Cores: honeycombs, foams, balsa
honeycombs: lighter then foam cores for required stiffness, strength foams: heavier, but can also provide thermal insulation

- Mechanical behavior depends on face and core properties and/or geometry
- Typically, panel must have some required stiffness and/or strength
- Often, want to minimize weight - optimization problem
e.g. refrigerated vehicles; sporting equipment (sail boats, skis)

(a)

(b)

Figure removed due to copyright restrictions. See Figure 9.4: Gibson, L. J. and M. F. Ashby. Cellular Solids: Structure and Properties. Cambridge University Press, 1997.

Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge University Press, © 1997. Figures courtesy of Lorna Gibson and Cambridge University Press.

Sandwich beam stiffness

- Analyze beams here (simpler than plates; same ideas apply)

Face: $\rho_{f}, E_{f}, \sigma_{y f}$
Core: $\rho_{c}^{*}, E_{c}^{*}, \sigma_{c}^{*}$
(Solid: $\rho_{s}, E_{s}, \sigma_{y s}$)
Typically $E_{c}^{*} \ll E_{f}$
B.M.

bending deflection δ_{b} and shear deflection (of core) δ_{s} since $G_{c}^{*} \ll E_{f}$, core sheer deflections significant

$$
\begin{array}{ll}
\delta_{b}=\frac{P l^{3}}{B_{1}(E I)_{e q}} & \begin{array}{l}
B_{1}=\text { constant, depending on loading configuration } \\
3 \mathrm{pt} \text { bend, } B_{1}=48
\end{array}
\end{array}
$$

$$
(E I)_{e q}=\left(\frac{E_{f} b t^{3}}{12} \times 2\right)+E_{c} \frac{b c^{3}}{12}+E_{f} b t\left(\frac{c_{t} t}{2}\right)^{2} \times 2 \quad \text { parallel axis theorem }
$$

$$
=\frac{E_{f} b t^{3}}{6}+\frac{E_{c} b c^{3}}{12}+\frac{E_{f} b t}{2}(c+t)^{2}
$$

Sandwich structures: typically $E_{f} \gg E_{c}^{*}$ and $c \gg t$
Approximate $(E I)_{e q} \approx \frac{E_{f} b t c^{2}}{2}$

And also note:

$$
\begin{gathered}
G_{c}^{*}=C_{2} E_{s}\left(\rho^{*} / \rho_{s}\right)^{2}(\text { foam model }) \\
\quad C_{2} \approx 3 / 8
\end{gathered}
$$

Minimum weight for a given stiffness

- Given face and core materials
- beam length, width, loading geometry (e.g. 3 pt bend, B_{1}, B_{2})
- Find: face and core thicknesses, $\mathrm{t}+\mathrm{c}$, and core density ρ_{c}^{*} to minimize weight $W=2 \rho_{f} g b t l+\rho_{c}^{*} b c l$
- Solve P / δ equation for ρ_{c}^{*} and substitute into weight equation
- Solve $\partial W / \partial c=0$ and $\partial W / \partial t=0$ to get $t_{\mathrm{opt}}, c_{\mathrm{opt}}$
- Substitute $t_{\mathrm{opt}}, c_{\mathrm{opt}}$ into stiffness equation (P / δ) to get ρ_{c}^{*} opt
- Note that optimization possible by foam modeling $G_{c}=C_{2}\left(\rho^{*} / \rho_{s}\right)^{2} E_{s}$

$$
\begin{aligned}
\left(\frac{c}{l}\right)_{\mathrm{opt}} & =4.3\left\{\frac{C_{2} B_{2}}{B_{1}^{2}}\left(\frac{\rho_{f}}{\rho_{s}}\right)^{2} \frac{E_{s}}{E_{f}^{2}}\left(\frac{P}{\delta b}\right)\right\}^{1 / 5} \\
\left(\frac{t}{l}\right)_{\mathrm{opt}} & =0.32\left\{\frac{1}{B_{1} B_{2}^{2} C_{2}^{2}}\left(\frac{\rho_{s}}{\rho_{f}}\right)^{4} \frac{1}{E_{f} E_{s}^{2}}\left(\frac{P}{\delta b}\right)^{3}\right\}^{1 / 5} \\
\left(\frac{\rho_{c}^{*}}{\rho_{s}}\right)_{\mathrm{opt}} & =0.59\left\{\frac{B_{1}}{B_{2}^{3} C_{2}^{3}}\left(\frac{\rho_{s}}{\rho_{f}}\right) \frac{E_{f}}{E_{s}^{3}}\left(\frac{P}{\delta b}\right)^{2}\right\}^{1 / 5}
\end{aligned}
$$

Note: $\quad \frac{W_{\text {faces }}}{W_{\text {core }}}=\frac{1}{4} \quad \frac{\delta_{b}}{\delta}=\frac{1}{3} \quad \frac{\delta_{s}}{\delta}=\frac{2}{3}$

The design of sandwich panels with foam cores

Table 9.3 Optimum design of a sandwich panel subject to a stiffness constraint

Table 9.4 Optimization analysis for sandwich panels subject to a stiffness constraint

Geometry	$W_{\mathrm{f}} / W_{\mathrm{c}}$	$\delta_{\mathrm{b}} / \delta$	$\delta_{\mathrm{s}} / \delta$
Rectangular beam	$1 / 4$	$1 / 3$	$2 / 3$
Circular plate (distributed load over entire plate)	$1 / 4$	$1 / 3$	$2 / 3$
Circular plate (distributed load over radius r)	$1 / 4$	$1 / 3$	$2 / 3$

Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge University Press, © 1997. Table courtesy of Lorna Gibson and Cambridge University Press.

Comparison with experiments

- All faces with rigid PU foam core
- $G_{c}=0.7 E_{s}\left(\rho_{c}^{*} / \rho_{s}\right)^{2}$
- Beams designed to have same stiffness, P / δ, span l, width, b
- One set had $\rho_{c}^{*}=\rho_{c}^{*}$ opt, varied t, c
- One set had $t=t_{\text {opt }}$, varied ρ_{c}^{*}, c
- One set had $c=c_{\text {opt }}$, varied t, ρ_{c}^{*}
- Confirms minimum weight design; similar results with circular sandwich plates

Strength of sandwich beams

- Stresses in sandwich beams

Normal stresses

$$
\begin{aligned}
\sigma_{f} & =\frac{M y}{(E I)_{e q}} E_{f}=M \frac{c}{2} \frac{2}{E_{f} b t c^{2}} E_{f}=\frac{M}{b t c} \\
\sigma_{c} & =\frac{M y}{(E I)_{e q}} E_{c}^{*}=M \frac{c}{2} \frac{2}{E_{f} b t c^{2}} E_{c}^{*}=\frac{M}{b t c} \frac{E_{c}^{*}}{E_{f}}
\end{aligned}
$$

Since $E_{c}^{*} \ll E_{f} \quad \sigma_{c} \ll \sigma_{f} \quad \Rightarrow$ faces carry almost all normal stress

Minimum Weight Design

Al faces; Rigid PU foam core

Figures 7, 8, 9: Gibson, L. J. "Optimization of Stiffness in Sandwich Beams with Rigid Foam Cores." Material Science and Engineering 67 (1984): 125-35. Courtesy of Elsevier. Used with permission.

- For beam loaded by a concentrated load, P (e.g. 3 pt bend)

$$
\begin{aligned}
& M_{\max }=\frac{P l}{B_{3}} \text { e.g. } 3 \text { pt bend } B_{3}=4 ; \text { cantilever } B_{3}=1 \\
& \sigma_{f}=\frac{P l}{B_{3} b t c}
\end{aligned}
$$

- Shear stresses vary parabolically through the cross-section, but if

$$
\begin{array}{lll}
E_{f} \gg E_{c}^{*} \text { and } c \gg t & \tau_{c}=\frac{V}{b c} & \mathrm{~V}=\text { shear force at section of interest } \\
\tau_{c}=\frac{P}{B_{4} b c} & & V_{\max }=\frac{P}{B_{4}}
\end{array} \quad \text { e.g. } 3 \mathrm{pt} \text { bend } B_{4}=2
$$

Failure modes

face: can yield
compressible face can buckle locally - "wrinkling"
core: can fail in shear
also: can have debonding and indentation
we will assume perfect bond and load distributed sufficiently to avoid indentation

Stresses

Failure Modes

Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.
(a) Face yielding
$\sigma_{f}=\frac{P l}{B_{s} b t c}=\sigma_{y f}$
(b) Face wrinkling: when normal stress in the face $=$ local buckling stress
$\sigma_{\text {buckling }}=0.57 E_{f}^{1 / 3} E_{c}^{* 2 / 3} \quad$ buckling on an elastic foundation
$E_{c}^{*}=\left(\rho_{c}^{*} / \rho_{s}\right)^{2} E_{s}$
$\sigma_{\text {buckling }}=0.57 E_{f}^{1 / 3} E_{s}^{2 / 3}\left(\rho_{c}^{*} / \rho_{s}\right)^{4 / 3}$
wrinkling occurs when $\sigma_{f}=\frac{P l}{B_{s} b t c}=0.57 E_{f}^{1 / 3} E_{s}^{2 / 3}\left(\rho_{c}^{*} / \rho_{s}\right)^{4 / 3}$
(c) Core shear failure

$$
\begin{aligned}
& \tau_{c}=\tau_{c}^{*} \\
& \frac{P}{B_{4} b c}=C_{11}\left(\rho_{c}^{*} / \rho_{s}\right)^{3 / 2} \sigma_{y s} \quad C_{11} \approx 0.15
\end{aligned}
$$

- Dominant failure load is the one that occurs at the lowest load
- How does the failure mode depend on the beam design?
- Look at transition from one failure mode to another
- At the transition - two failure modes occur at same load
face yielding: $P_{f y}=B_{3} b c(t / l) \sigma_{y f}$
face wrinkling: $P_{f w}=0.57 B_{3} b c(t / l) E_{f}^{1 / 3} E_{s}^{2 / 3}\left(\rho_{c}^{*} / \rho_{s}\right)^{4 / 3}$
core shear: $P_{c s}=C_{11} B_{4} b c \sigma_{y s}\left(\rho_{c}^{*} / \rho_{s}\right)^{3 / 2}$
- Face yielding and face wrinkling occur at some load if

$$
\begin{aligned}
& B_{3} b c(t / l) \sigma_{y f}=0.57 B_{3} b c(t / l) E_{f}^{1 / 3} E_{s}^{2 / 3}\left(\rho_{c}^{*} / \rho_{s}\right)^{4 / 3} \\
& \text { or }\left(\rho_{c}^{*} / \rho_{s}\right)=\left(\frac{\sigma_{y f}}{0.57 E_{f}^{1 / 3} E_{s}^{2 / 3}}\right)^{3 / 4}
\end{aligned}
$$

i.e. for given face and core materials, at constant $\left(\rho_{c}^{*} / \rho_{s}\right)$

- Face yield - core shear

$$
\frac{t}{l}=\frac{C_{11} B_{4}}{B_{3}}\left(\frac{\rho_{c}^{*}}{\rho_{s}}\right)^{3 / 2}\left(\frac{\sigma_{y s}}{\sigma_{y f}}\right)
$$

- Face wrinkling - core shear $\quad \frac{t}{l}=\frac{C_{11} B_{4}}{0.57 B_{3}}\left(\frac{\sigma_{y s}}{E_{f}^{1 / 3} E_{s}^{2 / 3}}\right)\left(\frac{\rho_{c}^{*}}{\rho_{s}}\right)^{1 / 6}$
- Note: transition equation only involve constants $\left(C_{11} B_{3} B_{4}\right)$, material properties ($E_{f}, E_{s}, \sigma_{y s}$) and $t / l, \rho_{c}^{*} / \rho_{s}$; do not involve core thickness, c
- Can plot transition equation on plot with axes ρ_{c}^{*} / ρ_{s} and t / l
- Values of axes chosen to represent realistic values of
ρ_{c}^{*} / ρ_{s} - typically 0.02 to 0.3
t / l - typically $1 / 2000$ to $1 / 200=0.0005$ to 0.005
- Low values of t / l and $\rho_{c}^{*} / \rho_{s} \Rightarrow$ face wrinkling
- t thin and core stiffness, which acts as elastic foundation, low
- Low values t / l, higher values $\rho_{c}^{*} / \rho_{s} \Rightarrow$ transition to face yielding
- Higher values of $t / l \Rightarrow$ transition to core failure

Failure Mode Map

Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.

Failure Map: Expts

Figures 12 and 13: Triantafillou, T. C., and L. J. Gibson. "Failure Mode Maps for Foam Core Sandwich Beams." Materials Science and Engineering 95 (1987): 37-53. Courtesy of Elsevier. Used with permission.

- Map shown in figure for three point bending $\left(B_{2}=4, B_{4}=2\right)$
- Changing loading configuration moves boundaries a little, but overall, picture similar
- Expts on sandwich beams with Al faces and rigid PU foam cores confirm equation
- If know b, c - can add contours of failure loads

Minimum weight design for stiffness and strength: $t_{\text {opt }}, c_{\text {opt }}$

```
Given: stiffness \(P / \delta\)
    strength \(P_{0}\)
    span l width D
    loading configuration ( \(B_{1} B_{2} B_{3} B_{4}\) )
    face material \(\left(\rho_{f}, \sigma_{y f}, E_{f}\right)\)
    core material and density \(\left(\rho_{s}, E_{s}, \sigma_{y s}, \rho_{c}^{*}\right)\)
```

Find: face and core thickness, t , c to minimize weight

- Can obtain solution graphically, axes t / l and c / l
- Equation for stiffness constraint and each failure mode plotted
- Dashed lines - contours of weight
- Design-limiting constraints are stiffness and face yielding
- Optimum point - where they intersect
- Could add $\left(\rho_{c}^{*} / \rho_{s}\right)$ as variable on third axis and create surfaces for stiffness and failure equation; find optimum in the same way
- Analytical solution possible but cumbersome
- Also, values of c / l obtained this way may be unreasonably large - then have to introduce an additional constraint on c / l (e.g. $\mathrm{c} / \mathrm{l}<0.1$)

Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.

Minimum weight design: materials

- What are best materials for face and core? (stiffness constraint)
- Go back to min. wt. design for stiffness
- Can substitute $\left(\rho_{c}^{*}\right)_{\mathrm{opt}}, t_{\mathrm{opt}}, c_{\mathrm{opt}}$ into weight equation to get min. wt.:

$$
W=3.18 b l^{2}\left[\frac{1}{B_{1} B_{2}^{2} C_{2}^{2}} \frac{\rho_{f} \rho_{s}^{4}}{E_{f} E_{s}^{2}}\left(\frac{P}{\delta b}\right)^{3}\right]^{1 / 5}
$$

- Faces: W minimized with materials that minimize ρ_{f} / E_{f} (or maximize E_{f} / ρ_{f})
- Core: W minimized with materials that minimize ρ_{s}^{4} / E_{s}^{2} (or maximize $E_{s}^{1 / 2} / \rho_{s}$)
- Note: ○ faces of sandwich loaded by normal stress, axially if have solid material loaded axially, want to maximize E / ρ
- core loaded in shear and in the foam, cell edges bend if have solid material, loaded as beam in bending and want to minimize weight for a given stiffness, maximize $E^{1 / 2} / \rho$
- Sandwich panels may have face and core same material: e.g.
- then want to maximize $E^{3 / 5} / \rho$

Al faces Al foam core integral polymer face and core "structural polymer foams"

Case study: Downhill ski design

- Stiffness of ski gives skier right "feel"
- Too flexible - difficult to control
- Too stiff - skier suspended, as on a plank, between bumps
- Skis designed primarily for stiffness
- Originally skis made from a single piece of wood
- Next - laminated wood skis with denser wood (ash, hickory) on top of lighter wood core (pine, spruce)
- Modern skis - sandwich beams

$$
\left.\begin{array}{l}
\text { - faces - fiber composites or Al } \\
\text { - core - honecombs, foams (e.g. rigid PU), balsa }
\end{array}\right] \text { controls stiffness }
$$

- Additional materials
- bottom-layer of polyethylene - reduces friction
- short strip phenol - screw binding in
- neoprene strip $\sim 300 \mathrm{~mm}$ long - damping
- steel edges - better control

Ski Case Study

Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge University Press, © 1997. Figures courtesy of Lorna Gibson and Cambridge University Press.

Ski case study

- Properties of face and core material

	Al	Solid PU	Foam PU
$\rho\left(\mathrm{Mg} / \mathrm{m}^{3}\right)$	2.7	1.2	0.53
$E \mathrm{GPa}$	70	1.94	0.38
$G \mathrm{GPa}$	-	-	0.14

- Ski geometry
- Al faces constant thickness t
- PU foam core - c varies along length, thickest at center, where moment highest
- ski cambered
- mass of ski $=1.3 \mathrm{~kg}$ (central 1.7 m , neglecting tip and tail)

Ski Case Study

(a)

Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge
University Press, © 1997. Figures courtesy of Lorna Gibson and Cambridge University Press.

Bending stiffness

- Plot c vs. x, distance along ski
- Calculated (EI) $)_{\text {eq }}$ vs. x
- Calculated moment applied vs. x
- Get M/(EI) $)_{\text {eq }}$ vs. x
- Can then find bending deflection, $\delta_{b}=0.28 \mathrm{P}$
- Shear deflection found from avg. equiv. shear rigidity

$$
\delta_{s}=\frac{P l}{(A G)_{e q}}=0.0045 \mathrm{P}
$$

- $\delta=\delta_{b}+\delta_{s}=0.29 \mathrm{P} \quad P / \delta=3.5 \mathrm{~N} / \mathrm{mm} \quad$ measured $P / \delta=3.5 \mathrm{~N} / \mathrm{mm}$
- Note current design $\delta_{s} \ll \delta_{b}$; at optimum $\delta_{s} \sim 2 \delta_{b}$ (constant c)
- Can ski be redesigned to give same stiffness, P / δ, at lower weight?
- If use optimization method described earlier (assuming $\mathrm{c}=$ constant along length)

$$
\begin{array}{ll}
c_{\mathrm{opt}}=70 \mathrm{~mm} & \text { mass }=0.31 \mathrm{~kg} \Rightarrow 75 \% \text { reduction from current design } \\
t_{\mathrm{opt}}=0.095 \mathrm{~mm} & \\
p_{\mathrm{c} \text { opt }}^{*}=29 \mathrm{~kg} / \mathrm{m}^{3} & \text { But this design impractical } \Rightarrow \mathrm{c} \text { too large, } \mathrm{t} \text { too small }
\end{array}
$$

Alternative approach:

- Fix $c=m a x$ value practical under binding and profile c to give constant $M /(E I)_{\text {eq }}$ along length of ski (use $c_{\text {max }}=15 \mathrm{~mm}$)
- Find values of t, ρ_{c}^{*} to minimize weight for $P / \rho=3.5 \mathrm{~N} / \mathrm{mm}$
- Moment M varies linearly along the length of the ski
- Want (EI) $)_{\text {eq }}$ to vary linearly, too; $(E I)_{\text {eq }}=E_{f} b t c^{2} / 2$
- Want $c \propto \sqrt{x}$, distance along length of ski
- Half length of ski is 870 mm and $c_{\max }=15 \mathrm{~mm}$

$$
c=15\left(\frac{x}{870}\right)^{1 / 2}=0.51 x^{1 / 2}(\mathrm{~mm})
$$

- Can now do minimum weight analysis with

$$
\delta=\frac{P l^{3} 2}{B_{1} E_{f} b t\left(c_{\max }+t\right)^{2}}+\frac{P l}{B_{2} C_{2} b c_{\max }\left(\rho_{c}^{*} / \rho_{s}\right)^{2} E_{s}}
$$

Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge University Press, © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.

- B_{1} - corresponds to beams with constant M/EI
- B_{2} - cantilever value ($B_{2}=1$) multiplied by average value of c divided by maximum value of c $B_{2}=2 / 3$
- Solve stiffness equation for ρ_{c}^{*}, substitute into weight equation and take $\frac{\partial \omega}{\partial t}=0$
- Solve for t_{opt}, then $\rho_{\mathrm{c} \text { opt }}^{*}$
- Find: $\quad c_{\max }=15 \mathrm{~mm} \quad \rho_{\mathrm{c} \text { opt }}^{*}=1.63 \mathrm{~kg} / \mathrm{m}^{3}$

$$
t_{\text {opt }}=1.03 \mathrm{~mm} \quad \text { mass }=0.88 \mathrm{~kg} \Rightarrow 31 \% \text { less than current design }
$$

Daedalus

- MIT designed and built human powered aircraft (1980s)
- Flew 72 miles in ~ 4 hours from Crete to Santorini, 1988
- Kanellos Kanellopoulos - Greek bicycle champion pedaled and flew
mass $\quad 68.5^{\#}=31 \mathrm{~kg}$ propeller: kevlar faces, PS foam core (11^{\prime} long)
length $29^{\prime}=8.8 \mathrm{~m}$ wiring and trailing edge strips kevlar faces / rohacell foam core wingspin $112^{\prime}=34 \mathrm{~m}$ tail surface struts: carbon composite faces, balsa core

Daedalus

> Mass $=31 \mathrm{~kg}$
> Length $=8.8 \mathrm{~m}$
> Wingspan $=34 \mathrm{~m}$
> Propeller blades $=3.4 \mathrm{~m}$

Courtesy of NASA. Image is in the public domain. NASA Dryden Flight Research Center Photo Collection.

Flew 72 miles, from Crete to Santorin, in just under 4 hours
Sandwich panels: propeller, wing and tail trailing edge strips, tail surface struts

MIT OpenCourseWare
http://ocw.mit.edu
3.054 / 3.36 Cellular Solids: Structure, Properties and Applications

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

