#### **Cell-Scaffold Interactions:**

Scaffold Degradation Cell Attachment Cell Morphology Cell Contractility Cell Migration Cell Differentiation

#### Cell scaffold interactions

· Scaffolds also being used to characterize cell-scaffold interactions e.g. how cell be haviour (attachment, migration, contraction, differentiation) is affected by substrate

Scaffold degradation

- native ECM enzymes produced by cells resub ELM over time; cells also synthesize new ECM to replace it e.g. bone-rates of resorption + synthesis depend an loading
- · cells also deglade tissue engineering scaffolds
- · length of time scalfold remains moduble called "residence time"
- · require scalled degradation to occur in a manner that does not interfere with new ECM synthesis
- scaffold residence time must be approx. Equal to the time regnard to symphesize new ECM

- · degradation rate for scaffold depends on its chemical composition + Crosslinking and on relative density of scaffold
- · Synthetic polymers Can vary molecular veight of polymers + ratio of Co-polymers eq. PLGA higher GA: LA ratio polymers degrade quicker
- · collagen based scaffolds can control degree of coss-linking

physical methods: - dehydrothermal (DHT) treatment (105°C vacan 24 ho) - revolves water, forms interchain bonds through candensation

- uv treatment

chemical methods - glutaraldehyde; carbodi imite treatments

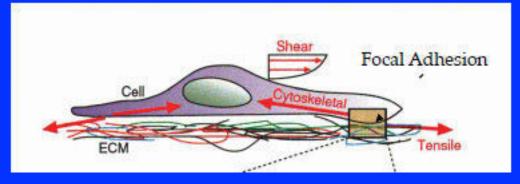
#### Cell adhesion

- · cells attach to ECM at focal adhesion
- · at focal adhesian
  - · cell has integrins trans membrane proteins that bind to ligends an ECM other end of integrin connects to sub - membrane plaque that then connects to cell's cyto skeleton (eq. to actin filaments)
- · cell behaviours such as attachment, migratian, proliferation, contraction
- a ffected by interactions between focal adhesians + integrins - biological activity of scaffelds depends on density of ligands available for integrins to bind to
- · ligand density depends an composition of scaffold + surface area/volume
- · Diological polymers that are constituents of native Lot scafford ECM (e.g. collagen) have a range of native binding sites
- · synthetiz polymers don't have binding sites + need to be functionalized with adhesive proteins such as fibronectin + laminin

- · specific surface area (salvoi) of sec fold depends on pine size, + relative density:
- · for a fetra kai decahedra 1 unit cell

 $\frac{SA}{V} \wedge \frac{1}{d} \left( \frac{p^*}{p^*} \right)^{\frac{1}{2}} \qquad \begin{bmatrix} SA/V = \frac{2\pi i \ln \alpha}{\lambda^3} \wedge \frac{r}{\lambda^2} \wedge \frac{r}{\lambda^2} \wedge \frac{r}{\lambda^2} \end{bmatrix}$ 

2 1r


(4)

· dependence of cell attachment an specific surface area was measured by seeding cells (MC 3T3-ET mouse oskogenic) on to collagen-GAG scattoldo of constant relative density (p\*ps=0.006) + Varying pore size

d= 96, 110, 121, 151 um

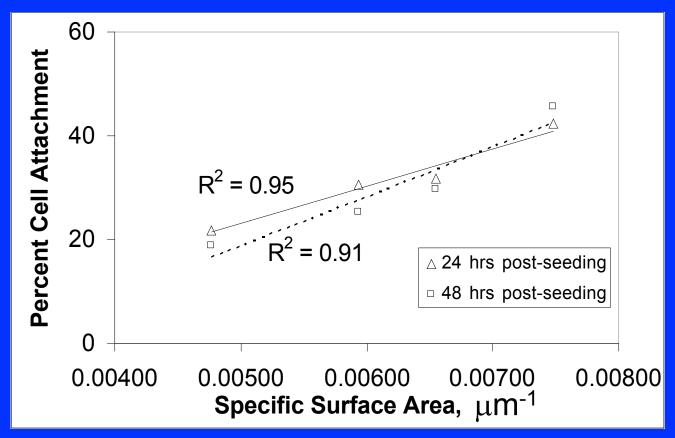
- . number of cells attached measured at 24, 48 hours
- · fraction of cells attached in creased linearly with specific surface area <u>Cell Morphology</u>
- · cell orientation follows scaffold pore orientation
- · cell morphology can depend an substrate stiffness
- <u>Cell contraction</u> Z se slides. <u>Cell misration</u> Z se slides.

### **Cell Adhesion**



Gibson, L. J., M. Ashby, et al. *Cellular Materials in Nature and Medicine*. Cambridge University Press. © 2010. Figure courtesy of Lorna Gibson and Cambridge University Press.

Figure removed due to copyright restrictions. See Figure 9.1: Gibson, L. J., M. Ashby, et al. *Cellular Materials in Nature and Medicine*. Cambridge University Press, 2010. http://books.google.com/books?id=AKxiS4AKpyEC&pg=PA255

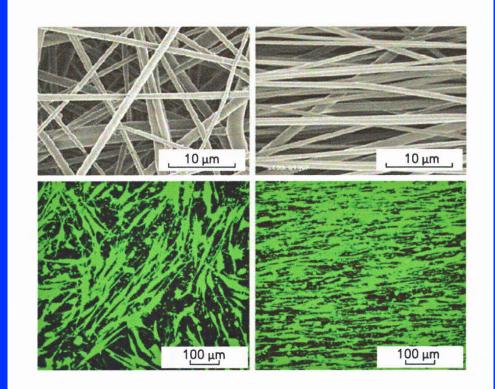

Gibson, Ashby and Harley, 2010

## Cell Attachment

$$\frac{SA}{V} = \frac{3.65}{l} \left(\frac{\rho^*}{\rho_s}\right)^{1/2} = \frac{0.718}{d}$$

Open-cell tetrakaidecahedron Circular cross-section edges I = edge length d = pore size Collagen-GAG scaffold:  $\rho^*/\rho_s = 0.005$ , d = 96, 110, 121, 150µm

### Cell Attachment




O'Brien, B. A. Harley, I. V. Yannas, et al. *Biomaterials* 26 (2005): 433-41. Courtesy of Elsevier. Used with permission. http://www.sciencedirect.com/science/article/pii/S0142961204002017

Mouse MC3T3 osteogenic cells on collagen-GAG scaffold

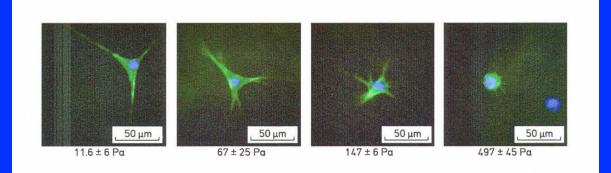
O' Brien

# Cell Morphology



#### PLGA scaffolds

Seeded with rotator cuff fibroblasts


#### Random



Moffat, K. L., et al. *Clinics in Sports Medicine* 28 (2009): 157-76. Courtesy of Elsevier. Used with permission. http://www.sciencedirect.com/science/article/pii/S0278591908000707

#### Moffat et al, 2009b

# Cell Morphology



E = 11.6 67 147 497 Pa

Dikovsky, D. H., et al. *Biophysical Journal* 94 (2008): 2914-25. Courtesy of Elsevier. Used with permission. http://www.sciencedirect.com/science/article/pii/S0006349508705411

#### Smooth muscle cells encapsulated in a PEG-fibrinogen hydrogels of varying modulus

Dikovsky et al., 2008

#### Cell Contractility: Wound Contraction and Scar Formation

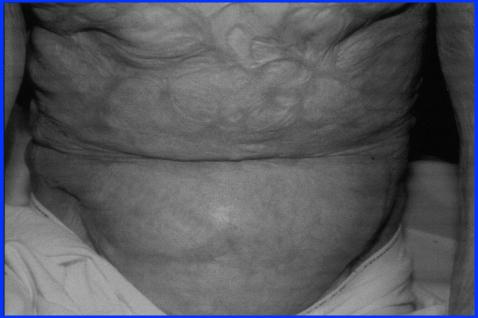


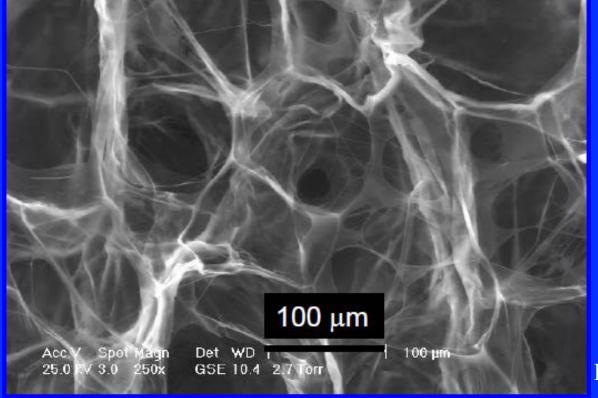

Image source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <a href="http://ccw.mit.edu/help/faq-fair-use/">http://ccw.mit.edu/help/faq-fair-use/</a>.

Wound contraction associated with scar formation

Use of collagen-GAG matrix inhibits wound contraction and scar formation; results in synthesis of normal dermis

#### Photo courtesy of IV Yannas

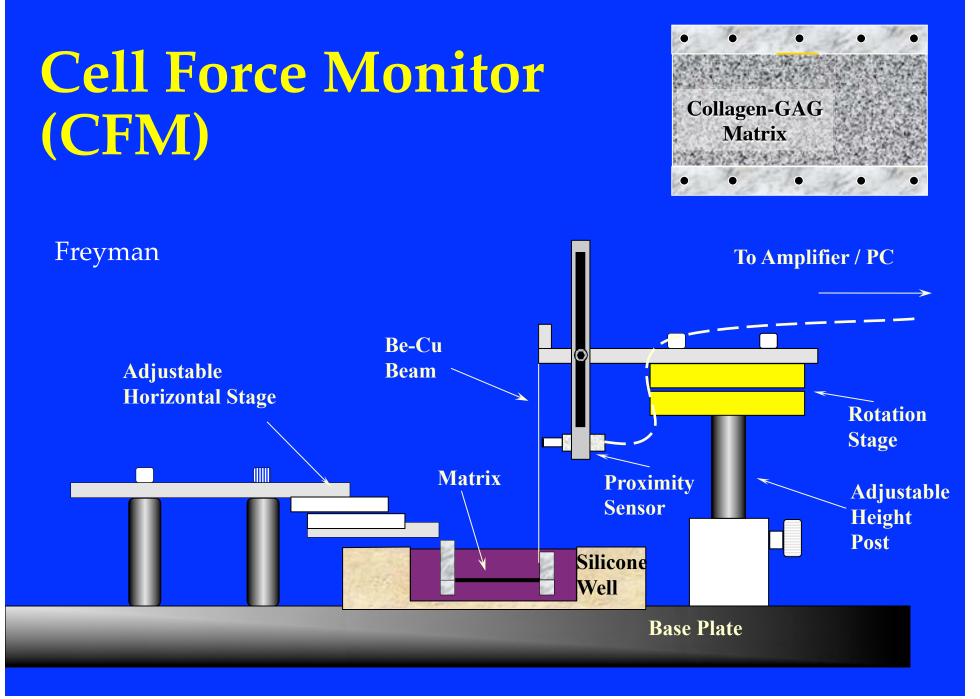
This observation has led to interest in contractile response of cells on the scaffold


## **Contractility of Cells**

Biological cells can contract a scaffold
Free-floating tests

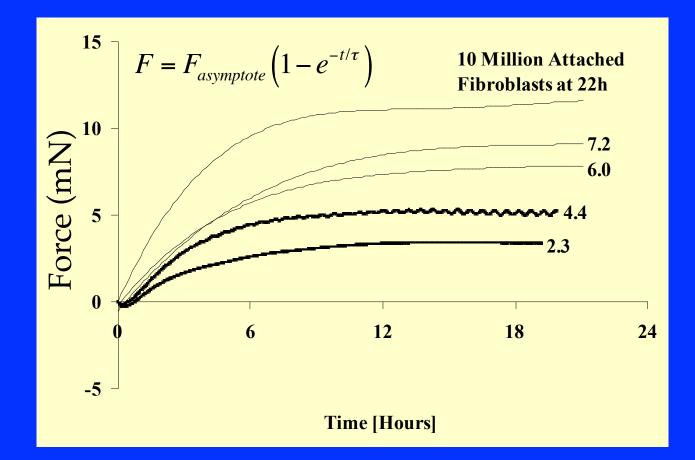
Measure diameter change

Developed cell force monitor (CFM) to measure forces


## **Collagen-GAG Scaffold**



Pek et al., 2004

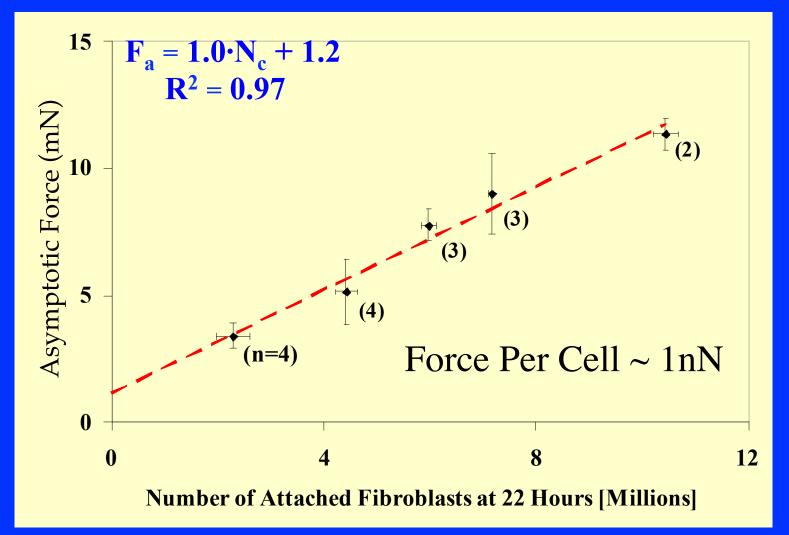

Fig. 1: Pek, Y. S., M. Spector, et al. *Biomaterials* 25 (2004): 473-82. Courtesy of Elsevier. Used with permission. http://www.sciencedirect.com/science/article/pii/S0142961203005416

Scaffold developed by IV Yannas (MIT)



Source: Freyman, T. M., et al. "Fibroblast Contractile Force is Independent of the Stiffness Which Resists the Contraction." *Experimental Cell Research* 272 (2002): 153-62. Courtesy of Academic Press/Elsevier. Used with permission.

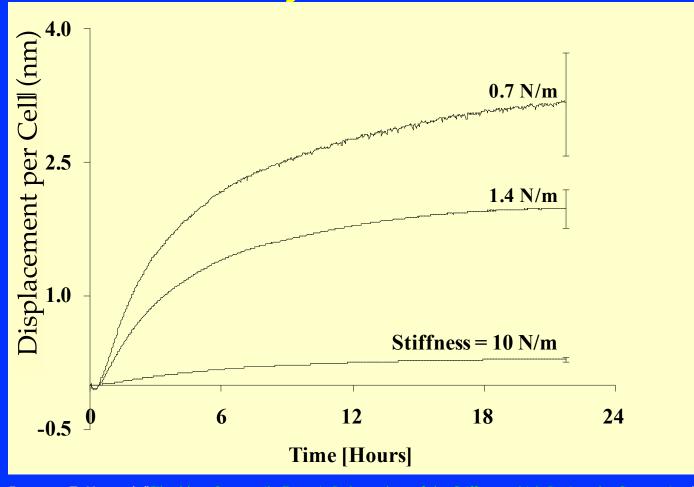
#### **CFM: Effect of Cell Number**




#### Time constant 5.7 hours



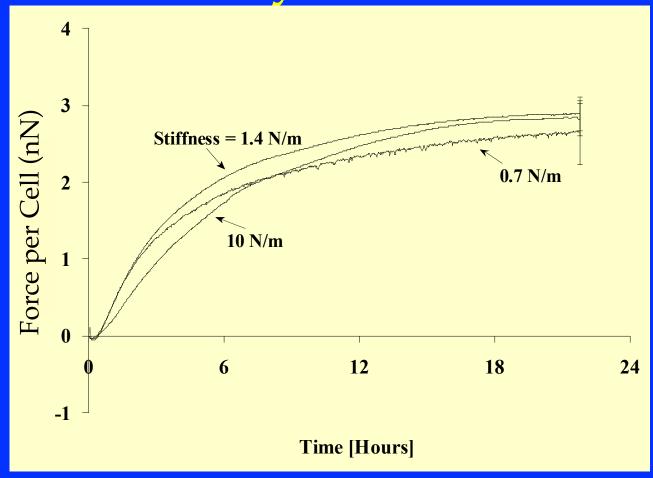
Freyman, T. M., I. V. Yannas, et al. "Fibroblast Contraction of a Collagen-GAG Matrix." *Biomaterials* 22 (2001): 2883-91. Courtesy of Elsevier. Used with permission.


### Effect of Cell Number



Freyman, T. M., I. V. Yannas, et al. "Fibroblast Contraction of a Collagen-GAG Matrix." *Biomaterials* 22 (2001): 2883-91. Courtesy of Elsevier. Used with permission.

Freyman


## Effect of System Stiffness



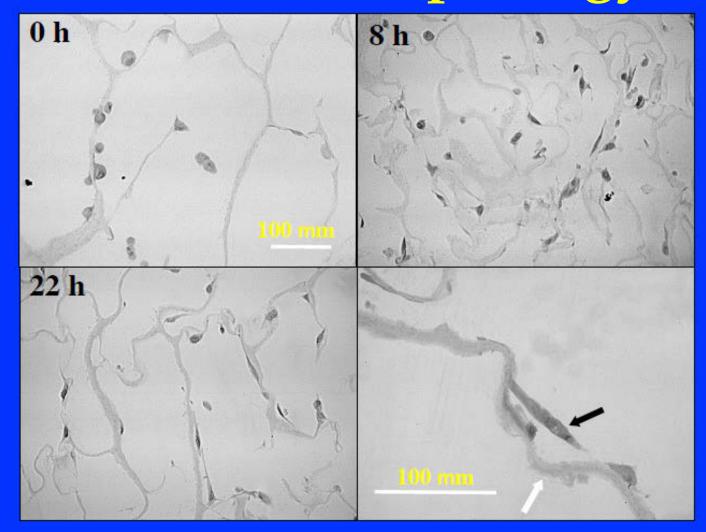
Freyman, T. M., et al. "Fibroblast Contractile Force is Independent of the Stiffness which Resists the Contraction." *Experimental Cell Research* 272 (2002): 153-62. Courtesy of Elsevier. Used with permission.



## **Effect of System Stiffness**



Freyman, T. M., et al. "Fibroblast Contractile Force is Independent of the Stiffness which Resists the Contraction." *Experimental Cell Research* 272 (2002): 153-62. Courtesy of Elsevier. Used with permission.


Freyman

## **Methods: Cell Elongation**

Average aspect ratio of cells

- Time points 0, 4, 8, 15, 22, and 48 h (n=3)
- Hematoxylin & eosin (H&E) stained glycomethacrylate (GMA) sections (5mm)
- Digital image analysis (~200 cells per sample)

### **Fibroblast Morphology**





Source: Freyman, T. M., et al. "Micromechanics of Fibroblast Contraction of a Collagen–GAG Matrix." *Experimental Cell Research* 269 (2001): 140-53. Courtesy of Academic Press/Elsevier. Used with permission.

### Fibroblast Morphology

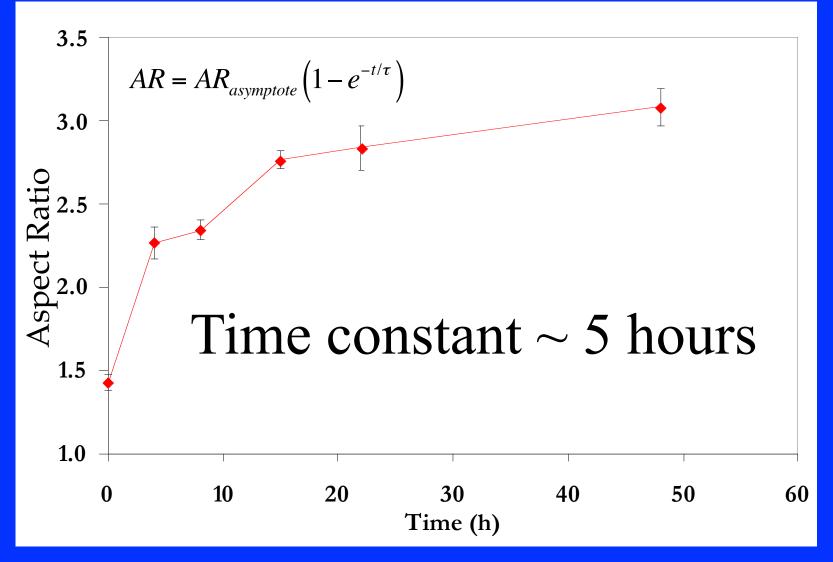



Image after Freyman, T. M., et al. "Micromechanics of Fibroblast Contraction of a Collagen–GAG Matrix." *Experimental Cell Research* 269 (2001): 140-53.

#### Freyman

### **Time Constants**

- Time constant for contraction ~ 5.7 hours
- Time constant for elongation ~ 5 hours
  Suggests a link between the average elongation of the cell population and the macroscopic contraction of the population

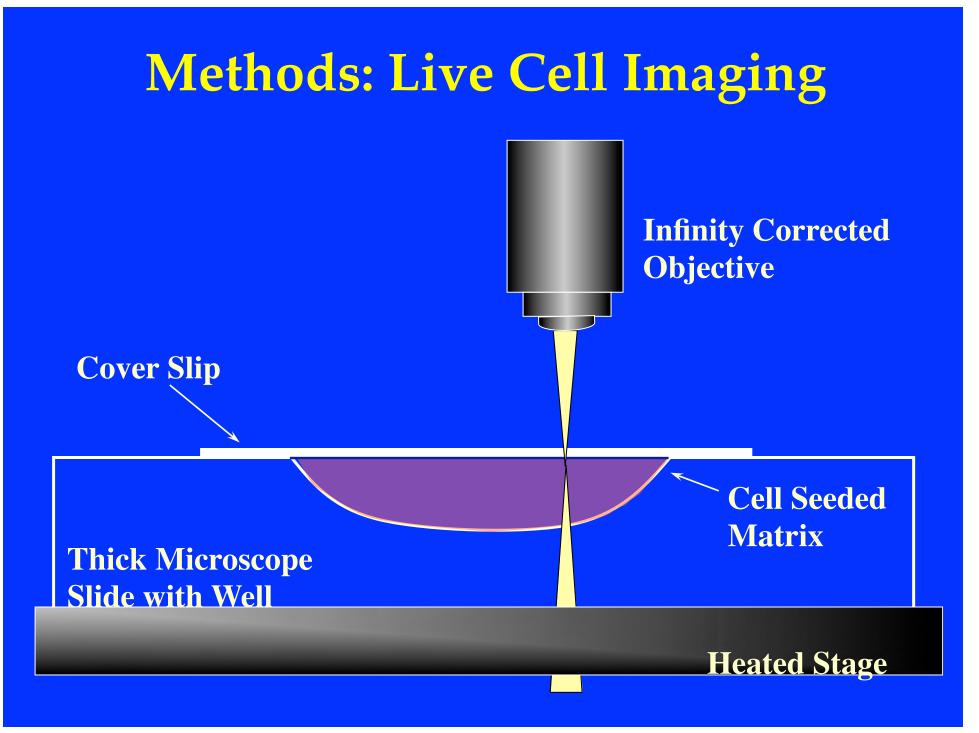
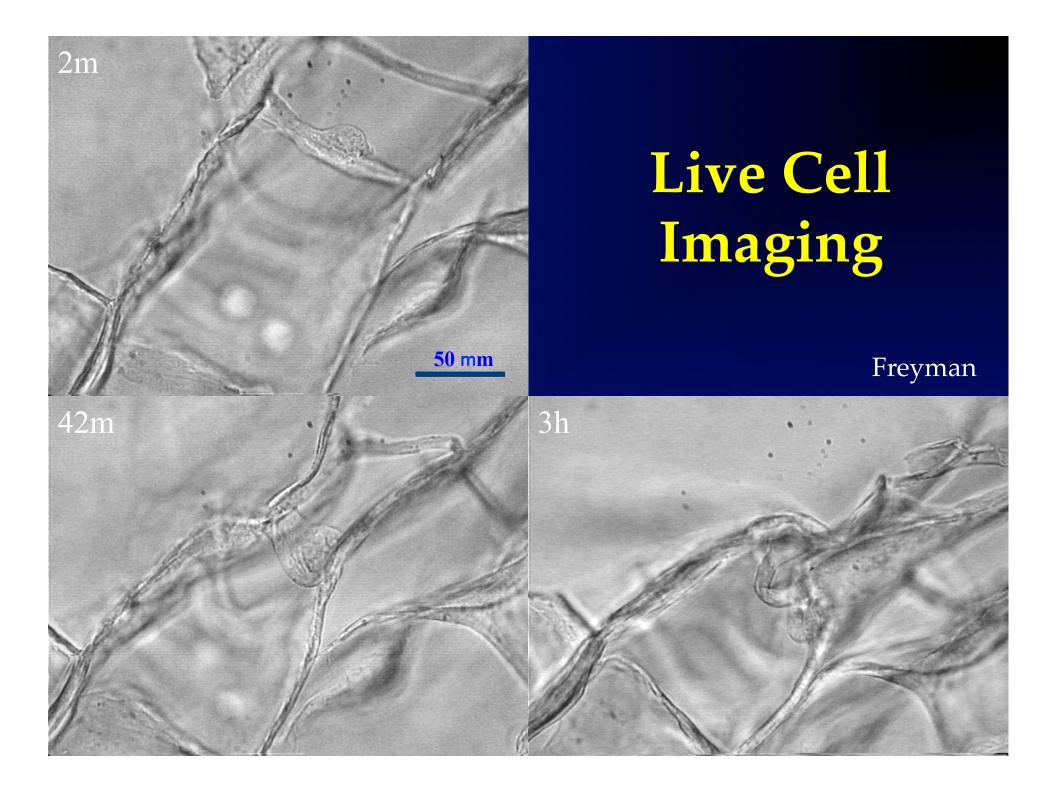
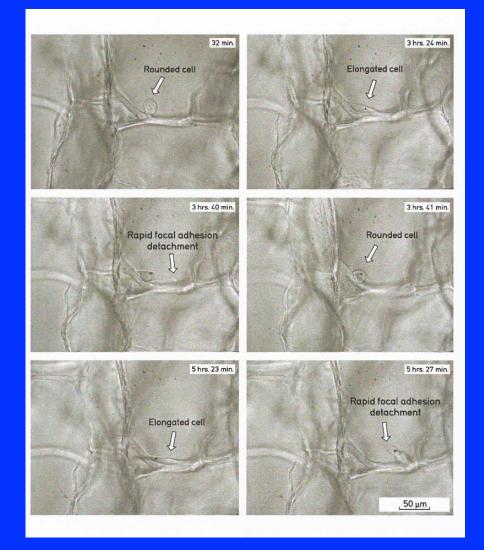
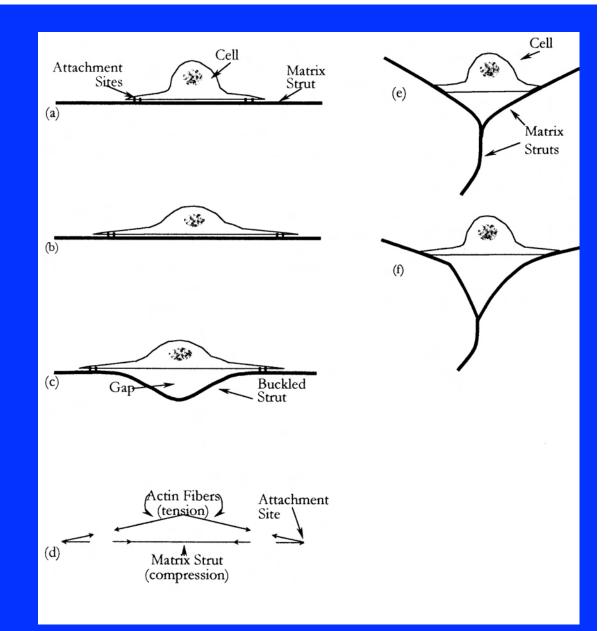




Image after Freyman, T. M., et al. "Micromechanics of Fibroblast Contraction of a Collagen–GAG Matrix." *Experimental Cell Research* 269 (2001): 140-53.




# Live Cell Imaging

Figure removed due to copyright restrictions. See Figure 7: Freyman, T. M., et al. "Micromechanics of Fibroblast Contraction of a Collagen–GAG Matrix." *Experimental Cell Research* 269 (2001): 140-53.




## Live Cell Imaging



Source: Freyman, T. M., et al. "Micromechanics of Fibroblast Contraction of a Collagen–GAG Matrix." *Experimental Cell Research* 269 (2001): 140-53. Courtesy of Academic Press/Elsevier. Used with permission.

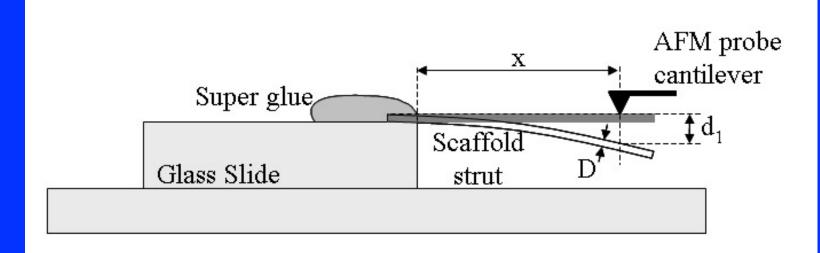
Schematic of cell elongation and matrix contraction



Freyman

Source: Freyman, T. M., et al. "Micromechanics of Fibroblast Contraction of a Collagen–GAG Matrix." *Experimental Cell Research* 269 (2001): 140-53. Courtesy of Academic Press/Elsevier. Used with permission.

### Discussion


#### • Cell elongation linked to contraction

- time constants for cell elongation and contractile force development similar (τ ~ 5h)
- as cell elongates, observe gap between central portion of cell and matrix
- adhesion points at periphery of cell
- tensile forces in actin filaments induce compression in the matrix => buckling

## Single Cell Contractile Force

- Contraction: cell buckling
- Measure E<sub>s</sub> from AFM bending test
- Allows calculation of contractile force of single fibroblast

## Single Cell Contractile Force



E<sub>s</sub> = 762 MPa (dry)

# $E_s = 5.28 MPa$ (wet)

Source: Harley, B. A., et al. *Acta Biomaterialia* 3 (2007): 463-74. Courtesy of Elsevier. Used with permission. http://www.sciencedirect.com/science/article/pii/S1742706107000025

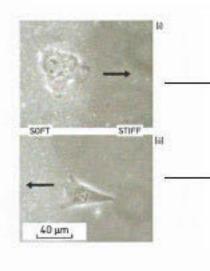
Harley, Silva

## Single Cell Contractile Force

• Euler buckling:

$$F = \frac{n^2 \pi^2 E_s}{l^2}$$

$$I = \frac{\pi d^4}{64}$$


 $n^2 = 0.34$  (hydrostatic loading of tetrakaidecahedral cells (Triantafillou) d = 3.9 +/- 0.8 µm; I from live cell imaging

$$F_c = 11$$
 to 41 nN (average 26 nN)

Harley, Wong

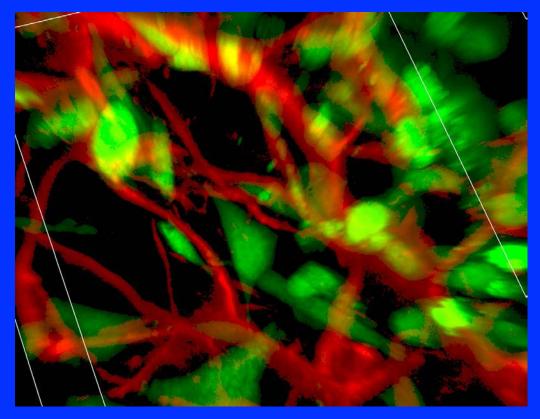
## **Cell Migration**

Figure removed due to copyright restrictions. Figure 3: Cornwell, K. G., et al. Journal of Biomedical Material Research A 80 (2007): 362-71. http://onlinelibrary.wiley.com/doi/10.1002/jbm. a.30893/abstract



Source: Lo, et al., Biophysical Journal 79 (2000): 144-52.

Courtesy of Elsevier. Used with permission. http://www.sciencedirect.com/science/article/pii/S0006349500762795


Top: Cornwell et al., 2007; Bottom: Lo et al, 2000

Migration speed on onedimensional fiber constructs

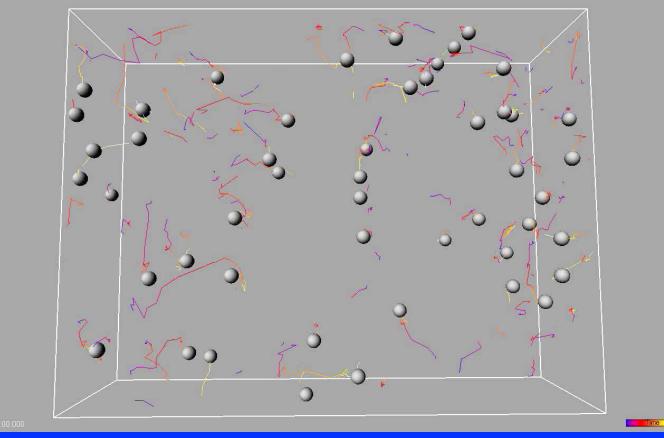
NIH 3T3 cells on 2D flat substrate: Cells on soft substrate cross to stiff substrate

Cells on stiff substrate will not cross onto soft substrate; instead spread out at boundary

## Cell Migration: Fibroblasts in CG Scaffold



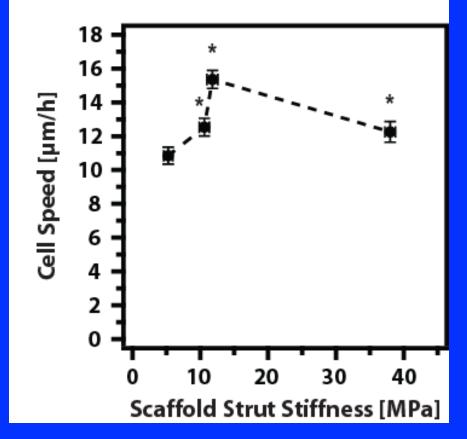
Courtesy of Brendan Harley. Used with permission.


Confocal Microscopy

NR6 Fibroblasts CMFDA Live Cell Tracker

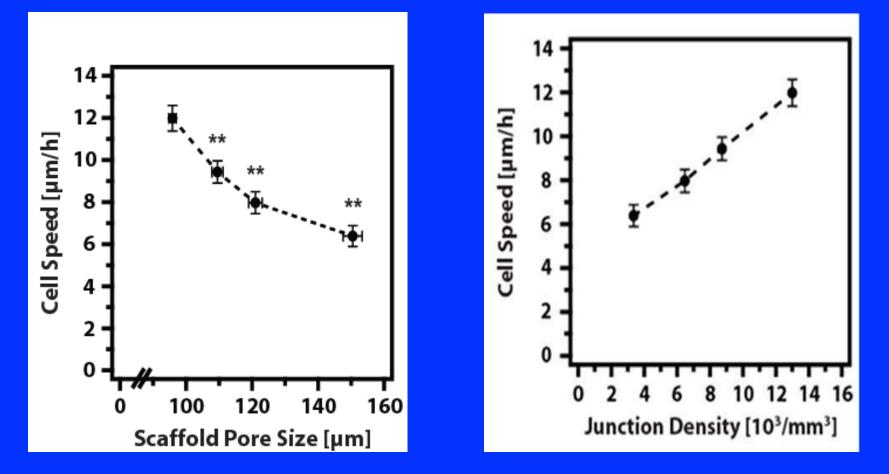
CG Scaffold Alexa Fluor 633 Stain

Harley


# Fibroblast Migration: Spot Tracking

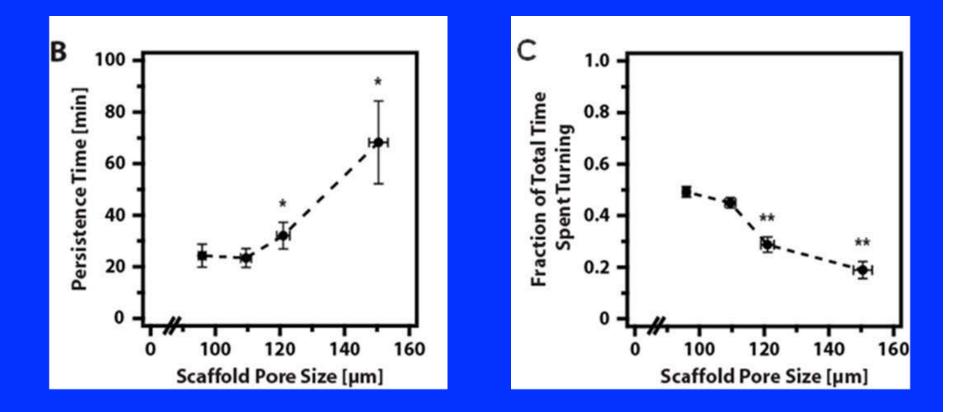


Courtesy of Brendan Harley. Used with permission.



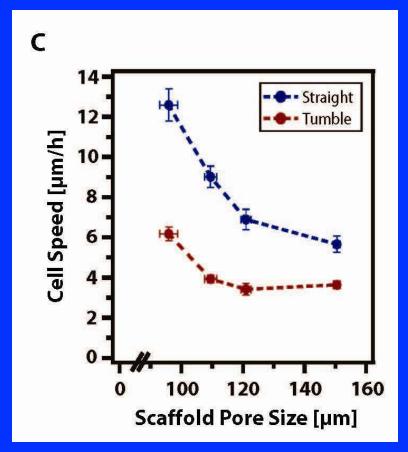

## Migration Speed vs Strut Stiffness




Source: Harley, B. A. C., et al. *Biophysical Journal* 95 (2008): 4013-24. Courtesy of Elsevier. Used with permission. http://www.sciencedirect.com/science/article/pii/S0006349508785394

## Migration Speed vs Pore Size




Source: Harley, B. A. C., et al. *Biophysical Journal* 95 (2008): 4013-24. Courtesy of Elsevier. Used with permission. http://www.sciencedirect.com/science/article/pii/S0006349508785394

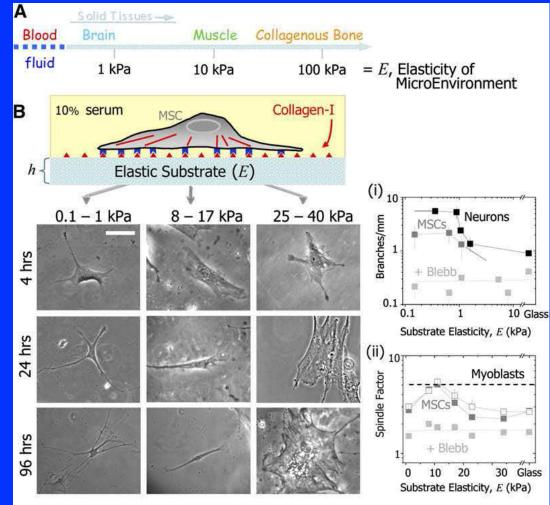
## Migration Speed vs Pore Size



Source: Harley, B. A. C., et al. *Biophysical Journal* 95 (2008): 4013-24. Courtesy of Elsevier. Used with permission. http://www.sciencedirect.com/science/article/pii/S0006349508785394

## Migration Speed vs Pore Size




Cells on scaffolds with smaller pore sizes have a higher speed both along a strut and at a strut junction than cells in scaffolds with larger pores

As pore size decreases, specific surface area increases and # binding sites increases

Source: Harley, B. A. C., et al. *Biophysical Journal* 95 (2008): 4013-24. Courtesy of Elsevier. Used with permission.

http://www.sciencedirect.com/science/article/pii/S0006349508785394

### **Cell Differentiation**



Engler et al., 2006

#### Neuron-like Myoblast-like Osteoblast-like

Source: Engler, A. J., et al. *Cell* 126 (2006): 677-89. Courtesy of Elsevier. Used with permission. http://www.sciencedirect.com/science/article/pii/S0092867406009615

## **Cell Differentiation**

| Culota a da d                                                                                    |                  |                                                                                                                              | + Blebbistatin   |                                                                                                        | + Blebbistatin |  |
|--------------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------|----------------|--|
| Substr 0.1 1 11 Elast. (kPa)                                                                     | 34 1 11 34       | 0.1 1 11 34                                                                                                                  | 1 11 34          | 0.1 1 11 34                                                                                            |                |  |
| GDNF<br>TUBB4<br>TUBB1<br>NCAM1<br>INA<br>TUBB3<br>MAPT<br>TTBK1<br>GFRA1<br>STAT3<br>NGF<br>FAS |                  | MYOG PAX7<br>PAX7<br>MEF2C PAX7<br>MEF2C PAX2<br>CDH15<br>NRAP<br>TTN<br>MEF2B PAX3<br>GRB2<br>MYF6<br>PAX3<br>GRB2<br>MEF2A |                  | BGLAP<br>SMAD1<br>SMAD6<br>SMAD7<br>SMAD5<br>TWIST2<br>CBFA1<br>BMP3<br>BMP5<br>TWIST1<br>BMP1<br>BMP4 |                |  |
| NRG1<br>BDNF<br>CD40<br>NEFL<br>TTBK2<br>NES<br>CDH2<br>TUBA3<br>ITGB3                           |                  | MYF5<br>MYOD1<br>GDF8<br>DES<br>FOXK1<br>TTTD<br>LBX1<br>MSX1<br>MEF2D<br>ITGA7<br>MSX2                                      |                  | SMAD2<br>VDR<br>SMAD9<br>SMAD3<br>BMP2<br>SOX9<br>SMAD4<br>TFIP11<br>SPP1<br>BMP6<br>COL3A1            |                |  |
| Avg. = 5.23<br>Relative to<br>undifferentiate                                                    | 1.75<br>d<br>Max | ITGB1D<br>6.19                                                                                                               | <b>↑</b><br>1.71 | BMP8B<br>BMP7<br>BMPR1A<br>CDH11<br>MGP<br>COL1A1<br>COL1A2                                            |                |  |

Engler et al, 2006

Source: Engler, A. J., et al. *Cell* 126 (2006): 677-89. Courtesy of Elsevier. Used with permission.

http://www.sciencedirect.com/science/article/pii/S0092867406009615

- Cell attachment increases linearly with specific surface area (binding sites)
- Cell morphology depends on orientation of pores in scaffold and on the stiffness of the scaffold

#### • Cell contractile behaviour:

- Cells bind at periphery of cells
- As they spread and elongate, unsupported length increases
- Compressive force in strut reaches buckling load
- For a population of cells in the cell force monitor, force per cell ~ 1nN
- Contractile force calculated from buckling of a strut by a single cell ~ 11-41 nN

- Cell migration speed increases with stiffness of 1D fibers
- Cells will not migrate from a stiff 2D substrate to a soft one
- In collagen-GAG scaffolds:
  - Cell migration speed increases at low scaffold stiffness and then decreases at higher scaffold stiffnesses
  - Cell migration speed increases at smaller pore sizes

#### • Cell differentiation

- Mesenchymal stem cells differentiate to different morphologies, resembling different cell lineages (neuron, myoblast, osteoblast), depending on substrate stiffness
- Differentiated cells on substrates of different stiffness have cell markers associated with the different cell lineages (neurons, myoblasts, osteoblasts)

### Acknowledgements

- Drs. TM Freyman, BA Harley, FJ O' Brien, M Zaman
- JH Leung, R Yokoo, Y-S Pek, MQ Wong, ECCM Silva, HD Kim, K Corin
- Profs. IV Yannas, D Lauffenburger, KJ Van Vliet
- Drs. Spector and Germaine
- NIH Training Grant, NIH grant (DE 13053), Matoula S. Salapatas Professorship, Cambridge-MIT Institute

3.054 / 3.36 Cellular Solids: Structure, Properties and Applications Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.