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3.052 Nanomechanics of Materials and Biomaterials: Spring 2007 
Assignment #6

Due Date: Friday 05.11.07 
You are encouraged to use additional resources (e.g. journal papers, internet, etc.) but please 

cite them (points will be deducted for not doing so). You will need to research additional sources 
to answer some questions. Everything must be answered in your own words; also, do not copy 


phrases or sentences from any papers or podcast.  

+ 5 extra credit for posting a message on one of the podcast message boards. 


1. Sacrificial Bonding in Biological Materials Podcast. Fantner, et al. Biophys. J. 2006 90, 
1411. 

a. Dr. Fantner comments that a modular structure with folded domains is not 
necessary for sacrificial bonding. Explain why. Where are the sacrificial bonds in 
Figure 3D? 

Modular domains are not required; sacrificial bonding refers to any situation where breaking the 
bond frees up additional contour length that was otherwise “hidden” by the bond. For example, 
in Figure 3D, as in Figure 3C, the sacrificial bonds are those connecting the molecules to the 
substrate. When the shortest molecule breaks first, it frees up the hidden length of the longer 
molecules still attached to the substrate.  

b. In Figure 2, plots 2 and 3, Dr. Fantner explained that to create these simulated WLC 
curves, he used the same forces and same spacing between sacrificial bonds (i.e., A 
and B are always the same linear distance apart as you travel along the molecule). 
Why are the rupture distances for case 3 farther apart than those for molecule 2? 

When a sacrificial bond breaks in molecule 2, the hidden length revealed is the linear distance 
between bonds A and B. When a sacrificial bond breaks in molecule 3, the hidden length 
revealed is actually twice that distance, due to the parallel strand structure of the molecule. This 
leads to the longer spacing between ruptures as the molecule is pulled apart.   

c. Is the increased energy dissipated in the systems described by Dr. Fantner with 
sacrificial bonding due to enthalpic contributions? Why or why not? 

No, the increased energy dissipation is primarily entropic in origin. There is some enthalpic 
energy dissipated in breaking the sacrificial bonds, but most work in stretching the systems 
described by Dr. Fantner goes into stretching out the hidden length. This work is against the 
entropic recoil of the hidden length of the polymers.  

d. Consider a modular polymer with a fully unfolded contour length Lcontour(unfolded) 
of 20 nm and a persistence length of 1 nm. Calculate and plot the normalized energy 
dissipated upon single chain stretching versus number of domains, N, from 0-20 
where the contour length of each unfolded domain is Lcontour(unfolded)/N and the 
rupture force = 200 pN. The energy normalization factor in the denominator should be 
for N = 1. The most feasible way to complete this problem is by writing a code in 
Mathematica or Matlab. 

See next page for answer. 
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%% WLCpset6.m

%% for pset6, Q1

%% dcfrance 05.03.07 for 3.052 Spring 2007


clear all


% contour length of entire molecule [nm]

Lc = 20; 

% persistence length [nm]

p = 1;


% N = number of domains making up molecule; 

% Lcd = fitting contour length for domain n out of N domains in a chain

% forces calculated in units of kBT/nm

% rupture force = 200 pN = 49 kBT/nm


EN = [];

figure; 

for N = 1:20


 % calculate force according to WLC model

 f = []; Edn = []; r = []; rrupture = [];

 for n = 1:N


 Lcd = n*Lc/N;

 rn = [Lcd/1000:Lcd/1000:Lcd-Lcd/1000];

 fn = (rn./Lcd + 1./(4*(1 - rn./Lcd).*(1 - rn./Lcd)) - 0.25) ./ p ;


 % cut off force at rupture

 fnzeroes = [];


 for i = 1:length(fn)

 if fn(i) < 49


 fn(i) = fn(i);

 else


 fn(i) = 0;

 fnzeroes = [fnzeroes i];


 end
 end


 r = [r; rn];

 % save rvalue where force ruptured

 rrupture = [rrupture rn(min(fnzeroes))];


 % to calculate energy of domain deformation, 
% first set range of r values over which to sum (only the r values
 % corresponding to that domain); do this by setting force of the domain 
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 % equal to zero over the r values when it is "hidden" by the domain

 % before it


 if n > 1

 for i = 1:length(rn)


 if rn(i) < rrupture(n-1)

 fn(i) = 0;


 end

 end


 end 


% calculate energy of domain deformation (=sum(fn.*rn)) and add to array
 % "Edn" containing domain energies for each domain within chain N 
Edn = [Edn sum(fn.*rn)];
 % plot force
 subplot(4,5,N);
 plot(r,fn.*(4.1e-21).*(10^21)); hold on
 end
 xlabel('r'); ylabel('f [pN]'); 

% calculate stretching energy per chain as the sum of all domain 
% energies in the chain (EN) and add to array 

EN = [EN sum(Edn)]; 
end 
xlabel('r'); ylabel('f [nN]'); 

% plot chain energies normalized by energy of chain with N = 1 domain

figure

plot([1:N],EN./EN(1),'c*')

xlabel('N'); ylabel('normalized chain energy');
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e. Draw a schematic of an "ideal" force vs. distance curve for maximum energy 
dissipation involving sacrificial bonding, point out the different features of your 
schematic including where the sacrificial bonds rupture, and explain how they lead to 
increased energy dissipation. 

An “ideal” force vs. distance curve will start with a high global entropic chain stiffness, so that 
the area under the curve (equivalent to the energy dissipated) will quickly increase. A plateau 
with high extensibility makes up the rest of the curve, so that the cell dissipates as much energy 
as possible at the high forces required to reach the plateau. 

This type of curve can be achieved by a long, stiff domain making up most of the length of the 
molecule; if it has a lower rupture force than the other smaller domains making up the rest of the 
molecule, it will absorb all of the energy at first and create the rise to the plateau. Then the rest 
of the molecule will be made up of small domains that don’t release much contour length as 
their sacrificial bonds rupture, so that the force never has a chance to really drop back down to 
zero. 
The image above shows a schematic of what the curve might look like, but if taken to the limit of 
small domains, it would look a more continuous “squiqqle” of high extensibility along the plateau. 
Each additional domain adds to the total amount of energy which can be dissipated by the chain. 
A limit to the number of domains in an ideal curve will come when the domain length comes too 
close to the persistence length and folding of a domain is actually not realistic due to the 
stiffness of the chain.  

f. Professor Zhibin Guan is a chemist at UC Irvine who has been designing synthetic 
polymers using the sacrificial bonding concept. Look up one of his papers on this 
topic and write a one paragraph summary (do not copy abstract). 
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g. Sacrificial bonding is thought to be particularly 
important to the fracture resistance of bone. Research 
the proposed molecular origin in the literature (i.e. 
which molecules and structures could be involved). 
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2. Nanomechanics of DNA (*data taken from Bustamante, et al., Nature, 2000, 404,103). 
a. Based on your knowledge of the structure of DNA, the electrostatic double layer, 
and of theoretical models for single molecule elasticity, how would you expect the 
global entropic chain stiffness (slope of force vs. distance curve) for stretching of a 
single DNA molecule to vary with salt concentration and why? 

DNA is negatively charged, so that as the salt concentration increases, the positive salt ions will 
act to screen the negative charges on the DNA. This leads to a reduction in the intramolecular 
electrostatic repulsion of fixed charge groups along the chain, and allows the DNA chain to 
access a greater number of random, thermally-driven conformations. A higher number of 
conformations is the basis of higher elasticity, which means that the chain will be more difficult 
to stretch out from its equilibrium position. The increased difficulty would manifest as increased 
global entropic chain stiffness in the force vs. distance curve; i.e., the slope will increase with 
increased salt concentrations.  

b. Below is a schematic and plot of optical tweezers data for stretching of double-
stranded (ds) compared to single-stranded (ss)DNA. Explain all of the differences and 
similarities between the two curves. 
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Differences: Single-stranded DNA behaves as a typical worm-like chain, with monotonically 
increasing force and stiffness as extension increases. Double-stranded DNA, on the other hand, 
has various different stiffnesses, and a sudden transition from one stiffness around a fractional 
extension of one to a much lower stiffness that takes over until a fractional extension of around 
1.7. Double-stranded DNA also starts out at a much lower stiffness in low extensions; it requires 
much less force to stretch dsDNA at low extensions that it does for ssDNA. The difference can 
be attributed to the different persistence lengths of the two molecules: ssDNA has a lower 
persistence length so it leads to higher forces.  
Similarities: Both curves tend towards the same stiffness at very high extensions, after dsDNA 
has undergone its form transition.  

c. The x-axis of the force vs. extension curve is given as “fractional extension” for 
dsDNA. How is it that “fractional extension” can be greater than one? Use this 
information to calculate the distance between adjacent base pairs in dsDNA in the 
two different structural forms depicted in the plot. 

Fractional extension can be greater than one because the dsDNA actually changes form, from 
B-form to S-form. Extension of one is equivalent to stretching out the full contour length of B-
form dsDNA, which has a lower contour length than the same chain in S-form. From the graph, 
we can read off two approximate contour lengths for the two different forms (B-form and S-form) 
of dsDNA; for B-form, (fractional) contour length is set at the fractional extension ~ 1; for S-form, 
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the (fractional relative to B-form) contour length is around 1.8. This means that spacing between 
base pairs in S-form is 1.8x that in B-form. The rise per base pair, equivalent to linear spacing 
between base pairs, in B-form dsDNA is 0.34 nm [Stryer, Biochemistry, 4th Ed, 1998, p791]. 
This means that the spacing increases to ~ 0.34*1.8 = 0.612 nm.  

3. Nanoindentation of Seashell Nacre: Bruet, et al. J. Mater. Res. 20(9), 2005. 2400-2419. 
a. 	 Create two tables; one for fresh nacre and one for hydrated nacre. In each 

table, create columns with numerical values obtained from and calculated from 
data in the paper for Pmax, hmax, and Amax. Pmax is the maximum load upon 
indentation, hmax is the maximum depth upon indentation, and Amax is the 
projected contact area at Pmax and hmax. You can assume that the Berkovich 
probe tip has an ideal shape. 

For an ideal Berkovich tip, Aprojected = 24.5 h2. We can measure the max depths from 
Fig 11 a and b. Then we find the following areas for the two experiments: 

Experiment Fresh nacre 	 Hydrated nacre 
(uN) max depth max A (nm2) max depth max A (nm2) 

(nm) (nm) 
50 9.5 2211.13 16.8 6914.88 

100 15.1 5586.25 25.8 16308.2 
250 27.3 18259.6 32 25088 
500 42.4 44045.1 51.5 64980.1 
750 54.5 72771.1 63.7 99413.4 
1000 66.7 108998 72.8 129846 

We see that the areas are all within the range 2x103-1.3x105 nm2 so we want to 
measure the RMS roughness of areas within this range on the AFM image. 

b. 	 Measure the RMS surface roughness of a real nacre sample using the AFM 
image posted on the MIT Server which spans the full range of Amax you obtained in 3a. 
Perform at least 50 measurements of different sizes. Plot RMS surface 
roughness (nm) vs. √A (√nm) and carry out a linear regression of this data. 

AFM image provided: 
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Plot of the RMS measurements (~70 data points) using WsXM: 

8 
y = 0.0084x + 2.3798 7 

R2 = 0.542 
6


5


4


3


2


1


0


0 100 200 300 400 

Sqrt(Area) (nm) 

c. 	 Datasets of modulus values for each maximum load (calculated from the 
Oliver-Pharr method) are posted on the MIT Server. Calculate and plot the coefficient of 
variation COV(E) = standard deviation/mean for both fresh and hydrated nacre 
vs. the ratio hmax/RMS roughness. Explain the resulting trends. 
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Experiment Fresh nacre Hydrated nacre 
(uN) max RMS ratio max RMS ratio 

depth depth 
50 9.5 2.77479 3.423683 16.8 3.078308 5.457543 
100 15.1 3.007626 5.020571 25.8 3.452509 7.472826 
250 27.3 3.514876 7.766988 32 3.710292 8.624658 
500 42.4 4.142702 10.23487 51.5 4.521061 11.39113 
750 54.5 4.645794 11.73104 63.7 5.028311 12.66827 

1000 66.7 5.153045 12.9438 72.8 5.40667 13.46485 

0.3 
Freshly cleaved nacre 
Hydrated nacre 0.25 

0.2 

0.15 

0.1 

0.05 

0 
0  5  10  15  

hmax/RMS roughness 

The COV(E) has high values for 50uN indents (with max depth of ~10nm) and then 
decreases toward 10%. Most likely this is due to the roughness of the sample (we’ve 
seen that the max height of the nanoasperities is 7.4nm). For the hydrated sample in 
Fig 12 the nanoasperities appear more swollen (greater roughness) so this can explain 
why the decrease for the COV is slower for the hydrated sample. 

The nanoscale heterogeneity plays a role in the equilibrium value for the COV (about 
10% here). For very homogeneous samples such as Fused Silica (SiO2) typical values 
are 2%, that is, 5 times smaller. The shape of the indenter also plays a role in the 
sensitivity to small scale heterogeneity. A rather flat tip such as the Berkovich tends to 
be quite sensitive to surface roughness and less to the material heterogeneity because 
it probes large areas. A very pointy tip will be less sensitive to surface roughness and 
more to material heterogeneity, but its tip area function will be more difficult to 
characterize accurately and it will tend to wear (change shape) faster. 
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d. 	 Describe the advantages and disadvantages of the finite element analysis (FEA) 
approach compared to Oliver-Pharr (O-P) approach. 

The Oliver-Pharr method assumes an isotropic, elastic, continuum formulation that 
works for any geometry. Since it is an analytical solution, an enormous amount of data 
can be processed very rapidly. It assumes sink-in which may not be valid for certain 
types of plastic deformation. FEA is a computational method, much slower than O-P, 
that can take into account full constitutive models such as yield stress, hardening, etc., 
to more accurately capture the material behavior. However, this adds more fitting 
parameters and it can be difficult to obtain a unique solution.  

e. 	 Explain the difference between Hardness values calculated from the Oliver-
Pharr approach compared to AFM imaging measurements of residual indent 
area. 

Hardness calculated using O-P is calculated from the contact area at maximum depth 
and hence, includes both elastic and plastic deformation; i.e. it is total resistance to 
deformation. Hardness calculated using AFM imaging of the residual indent is 
analogous to traditional hardness and represents resistance to plasticity only. 
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