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Problem 1
First, let’s identify the geometry:

and boundary conditions:
at y = 0, dvx = 0 (no shear)

dy

at y = L, vx = 0 (no slip).

For non-Newtonian fluids, dv m
tyx = -m J x

dy
N .

When this is substituted into the momentum balalnce equation and we use 
Fx = g r sinHqL, we see that
¶∂Hr vx

¶∂
L  = ¶∂ dv m

m x r q
t ¶∂

).
y
J J N N + g  sin(

dy

Note that when a non-Newtonian fluid is considered, the “m” appears inside the 
derivative with respect to y. Also, we are assuming steady-state, so ¶∂Hr vx

¶∂t
L  = 0.

Rearranging:

¶∂ dv m
n x

¶∂
 = - g sin(q)

y
J J

dy
N N

and integrating:

J
dvx

dy
N
m

 = - g/n sin(q) y + A
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and boundary conditions:
at y = 0, dvx

dy
= 0 (no shear)

at y = L, vx = 0 (no slip).

For non-Newtonian fluids, tyx = -m J dvx

dy
N
m

.

When this is substituted into the momentum balalnce equation and we use 
Fx = g r sinHqL, we see that
¶∂Hr vxL

¶∂t
 = ¶∂

¶∂y
Jm J dvx

dy
N
m
N + g r sin(q).

Note that when a non-Newtonian fluid is considered, the “m” appears inside the 
derivative with respect to y. Also, we are assuming steady-state, so ¶∂Hr vxL

¶∂t
 = 0.

Rearranging:

¶∂
¶∂y
Jn J dvx

dy
N
m
N = - g sin(q)

and integrating:

J
dvx N

m
 = - g/n sin(q) y + A

dy

Problem 2
Apply the no shear boundary condition:

J
dvx N

m
 = - g/n sin(q) y + A = 0 when y = 0  ï A = 0.

dy

Rearrange, and integrate again:
dvx  = (-g/n sin(q) y
dy

L1êm

vx =
1

1êm+
 

1
J -n

g sinHqL
N (-g/n sin(q) yL1êm+ 1 + B

Apply the no slip bounary condition:

vx =
1

1êm+
 

1
J -n

g sinH
n q 1 m+ 1 

qL
N (-g/  sin( ) yL ê + B = 0 when y = L

\  B = 
ê

-1  J -n (-g L 1êm+ 1
+

 /n sin(q) L  
1 m 1 g sinHqL

N

ê

1 I
g sinHqL

M
1êm vx = 1 m+ 1 n

IL1êm+ 1 - y1 m+ 1

Note that when m = 1, this is the sa

ê

me as

M

 the Newtonian solution.

Problem 3
To plot the result, first define the function describing vx:

vx@m_, y_, n_D := H1 ê HH1 ê mL + 1LL H9.8 Sin@Pi ê 4D ê nLH1êmL I1 - yH1êmL+1M

I chose g = 9.8,  q = p/4 = 45°, and L = 1 (arbitrary)

Below is a plot with m = 0.2 (blue), 0.4 (red), 0.6 (yellow), 0.8 (green), and 1 
(blue-gray). I also plotted the Newtonian solution we derived in class, in orange. 
You can see that the m = 1 solution and the Newtonian, parabolic solution com-
pletely overlap. The trend of whether the non-newtonian solutions are faster or 
slower than the Netonian solution depends on your choice of the magnitude of 
viscosity.
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I chose g = 9.8,  q = p/4 = 45°, and L = 1 (arbitrary)

Below is a plot with m = 0.2 (blue), 0.4 (red), 0.6 (yellow), 0.8 (green), and 1 
(blue-gray). I also plotted the Newtonian solution we derived in class, in orange. 
You can see that the m = 1 solution and the Newtonian, parabolic solution com-
pletely overlap. The trend of whether the non-newtonian solutions are faster or 
slower than the Netonian solution depends on your choice of the magnitude of 
viscosity.

With n = 4:
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With n = 8:
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Either way, the non-Newtonian solution is “snubbier.” If you think about it, this make sense 
because the fluid has a lower viscosity where the shear, or dvx

dy , is greater. Therefore, it is better 
to concentrate the gradients in a small range and have an area of high shear, but reduced 
viscosity (i.e., reduced resistance to shearing). The smaller m gets, the narrower this region 
becomes. In the limit of small m (see below: m = 0.01), the profile becomes square: the bulk 
of the fluid is actually acting like a solid. This almost-solid is gliding on a very thin layer of 
fluid that experiences essentially 100% of the shear required to satisfy the B.C.’s. This thin 
layer has dramatically lower viscosity because the shear is so high, making it very easy to 
flow.
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Problem 4
I will assume that a typical water bottle is about 10 cm in diameter, and we are 
told that it must be 100 mm thick, so this has a volume of about (and ignoring the 
bottom of the bottle):
V = 2 p R t L , with R = 0.05 m and L is the height of the bottle. We are assuming 
the bottle is thin relative to its diameter, and ignoring the bottom of the bottle for 
simplicity, but it would be correct to include it (it just turns out that the strains 
there are smaller, so that won’t be the point of failure). Also, we are assuming 
that the preform is the same length as the final bottle.

The volume of the preform is:
V = pR 2

out L - p R 2
in L, where Rout = the outer radius of the preform, which is 

comperable to that of a soda bottle cap, so about 1 cm in diameter, and Rin = the 
inner radius of the blank, which we must solve for.

The two volumes must be equal, so:
 pRout

2L - p Rin
2 L = 2 p R t L

 
 Cancel the L’s and p’s, and rearrange to get:

  Rin = Rout
2 - 2 R t

  
  Pugging in, we see that Rin = 0.949 cm, so the thickness of the blank must be 
about 0.05 cm = 500 mm thick.
  
  
  
  Next, we are asked to find the fracture strains. In class, we found that 

efracture = -m lnK1- J
Ao,i

Ao,h
N
1êm

O. We will take the ratio of areas to be 99%, since this 

is a typical value for a “routine” initial inhomogenaity, and the function is not 
especially sensitive to this ratio anyway. Plugging in the m for each material, we 
see that 
  efracture, 5083= 272%
  efracture, 6061= 405%
  efracture, 7091= 139%
  efracture, 7475= 405%
  
  In recitation, we learned that the maximum tensile strain experienced by a bot-
tle being blow-molded is LnJ Rbottle, inner

Rpreform, inner
N, which in our case is equal to ~166%, so 

we expect that Al 7091 will fail, Al 5083 has a decent chance at surviving, and 
both 6061 and 7475 are safe. However, for thinner bottles, or larger bottles, or 
more irregular preforms, even these nearly-Newtonian alloys would be at the 
cusp of failure. 
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I will assume that a typical water bottle is about 10 cm in diameter, and we are 
told that it must be 100 mm thick, so this has a volume of about (and ignoring the 
bottom of the bottle):
V = 2 p R t L , with R = 0.05 m and L is the height of the bottle. We are assuming 
the bottle is thin relative to its diameter, and ignoring the bottom of the bottle for 
simplicity, but it would be correct to include it (it just turns out that the strains 
there are smaller, so that won’t be the point of failure). Also, we are assuming 
that the preform is the same length as the final bottle.

The volume of the preform is:
V = pRout

2L - p Rin
2 L, where Rout = the outer radius of the preform, which is 

comperable to that of a soda bottle cap, so about 1 cm in diameter, and Rin = the 
inner radius of the blank, which we must solve for.
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out L - p R 2
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 Cancel the L’s and p’s, and rearrange to get:

  Rin = R 2
out - 2 R t

  
  Pugging in, we see that Rin = 0.949 cm, so the thickness of the blank must be 
about 0.05 cm = 500 mm thick.
  
  
  
  Next, we are asked to find the fracture strains. In class, we found that 

1 m
efracture = -m lnK1 A

- J o,i N
ê
O. We will take the ratio of areas to be 99%, since this 

Ao,h

is a typical value for a “routine” initial inhomogenaity, and the function is not 
especially sensitive to this ratio anyway. Plugging in the m for each material, we 
see that 
  efracture, 5083= 272%
  efracture, 6061= 405%
  efracture, 7091= 139%
  efracture, 7475= 405%
  
  In recitation, we learned that the maximum tensile strain experienced by a bot-
tle being blow-molded is LnJ Rbottle, inner N, which in our case is equal to ~166%, so 

Rpreform, inner

we expect that Al 7091 will fail, Al 5083 has a decent chance at surviving, and 
both 6061 and 7475 are safe. However, for thinner bottles, or larger bottles, or 
more irregular preforms, even these nearly-Newtonian alloys would be at the 
cusp of failure. 

Problem 5
Below is a plot of HA0,i êA0,hL versus groove depth as provided in the problem state-
ment:
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Plot@Exp@-290 xD, 8x, 0, 0.01<D
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To find the groove depth value tolerable, plug in the above function for HA0,i êA0,hL in the fracture strain 
equaton, set that equal to the strain required to survive blow molding, and solve for “x,” the groove 
depth:

In[54]:= m = 0.9;
SolveA1.66 ã -m LogA1 - Exp@-290 xD1êmE, xE

Solve::ifun : Inverse functions are being used by Solve, so
some solutions may not be found; use Reduce for complete solution information. à

Out[55]= 88x Ø 0.000534133<<

(the error is harmless) for Al 6061 and Al 7475 which both have m = 0.9, the 
maximum groove depth is just 534 mm. Any deeper, and the inhomogeneity intro-
duced by the gooves will cause rupture before the bottle reaches its full diame-
ter. This is a very shallow groove!

In[56]:= m = 0.65;
SolveA1.66 ã -m LogA1 - Exp@-290 xD1êmE, xE

Solve::ifun : Inverse functions are being used by Solve, so
some solutions may not be found; use Reduce for complete solution information. à

Out[57]= 88x Ø 0.000181492<<

Al 5083 has m = 0.65, so the maximum groove depth is just 181 mm.
In[58]:= =

SolveA1.66 ã -m Log 1 - Exp -290 x 1 m , x

Solve::ifun : Inverse functio

A

ns are bein

@

g used by

D

 So

ê E

lve, so
some solutions may not be found; use Reduce for co

E

mplete solution information. à

Out[59]= 88x Ø 0.0000167098<<

 Al 7071 has m = 0.38, so it can only have 17 mm deep grooves. These would be 
imperceptable. 

Now you can immagine why it was only in recent years that thin-walled metal 

m 0.38;

bottles have become common, and why those “eco-shape” water bottles, which 
are super thin and have complicated shapes with lots of grooves to provide 
mechanical strength, were only introduced recently in plastic, which is very resis-
tant to necking. Also, you see peraps why metal bottles do not typically have 
grooves on them.
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are super thin and have complicated shapes with lots of grooves to provide 
mechanical strength, were only introduced recently in plastic, which is very resis-
tant to necking. Also, you see peraps why metal bottles do not typically have 
grooves on them.
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