
Pset 4 solutions, 3.044, 2013

Problem 1
Solve the 1D Navier-Stokes equation:
dv   d2

x v= n x x

dt 2 +  F
dy r

steady state Ø dvx = 0
dt

Fx=g r sin q

q depends on the local geometry - leave it general for now.

d2 vx

dy2 = -g
n

sin q

intergate:
dvx = -(g/n) sin q  y + A
dy

B.C.: at y=L, dvx = 0. This is a realistic boundary condition for an “infinite” liquid, 
dy

but we’ll aproximate the container as finite. Therefore, A = (g/n) sin q  L

dvx = (g/n) sin q  (L - y) 
dy

integrate:
vx = Hg ê nL sin q IL y - y2 ë2M + B

B.C.: at y=0, vx = v0. Therefore, B = v0.

v 2
x = Hg ê nL sin q IL y - y ë2M+ v0
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Note: there are several ways to do this problem. So long as your boundary condi-
tion choices were reasonable, that is okay. Also, the jury is still out whether the 
bouyant force should be included or not here, because the fluid is self-support-
ing. Either way, if you explained yourself and your logic is internally consistent, 
that is okay. 

Problem 2
Begin with the ratio of thermal resistances to see where the gradients 
are:
L -3

steelê

ê

ksteel

I

I2 x 10 ë2 m

Më

M

H

ëH37 W = 
Lzinc

êmK
k n 50 µ 10-6

zi c m 112 W êmK

L

L
= 60  >  10

fl the coating is too thin and conductive to sustain a thermal gradient. 

h for a solid-solid interface is ~4000 W ëm2 K, while it is ~10 W ëm2 K for the air 
side. We were told that the steel is held at room temperature, so the Zn could 
loose heat to either the air or the steel. Given that hsteel interface >> hair interface, we 
can neglect heat loss to the air. This means that our geometry looks just like a 
casting, with a steel mold and L/2 = 50 mm!

Next, we want to know if the steel can carry heat away quickly (so it looks like an 
actively-cooled mold), or if heat accumulates in the steel (so it looks like a thick 
mold), i.e., is it interface-resistance limited, or conduction in the mold-limited?

Biot number for steel:
hinterface Lsteel ê ksteel = I4000 W ëm2 KM H0.001 m) / (37 W/mK) = 0.108

This is just over our 0.1 threshold, but because the steel is nearly gradient-free, 
we should pick interface-limited instead of conduction-limited.

So, we have a thin liquid film with heat loss across a resiting interface into a 
solid with no gradients = a thin casting with a cooled mold and interface resis-
tance is limiting = die casting.

To solve:
heat of fusion = interface resistance
r Hf   ds

dt
 = hinterface HTm -TairL

solve, with the B.C. that s=0 at t=0:
s = h

Hf r
 HTm -TairL t

when s=50 mm, it will be solidified.

Tm=693 K, Tair = 300 K, Hf = 112 kJ/kg, r = 7140 kg ëm3, so the time to solidify is:
t = 0.025 seconds
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Begin with the ratio of thermal resistances to see where the gradients 
are:
Lsteelêksteel

Lzincêkzinc
 = I2 x 10-3ë2 mM ëH37 W êmKL

I50 µ 10-6 mMëH112 W êmKL
= 60  >  10

fl the coating is too thin and conductive to sustain a thermal gradient. 

h for a solid-solid interface is ~4000 W ëm2 K, while it is ~10 W ëm2 K for the air 
side. We were told that the steel is held at room temperature, so the Zn could 
loose heat to either the air or the steel. Given that hsteel interface >> hair interface, we 
can neglect heat loss to the air. This means that our geometry looks just like a 
casting, with a steel mold and L/2 = 50 mm!

Next, we want to know if the steel can carry heat away quickly (so it looks like an 
actively-cooled mold), or if heat accumulates in the steel (so it looks like a thick 
mold), i.e., is it interface-resistance limited, or conduction in the mold-limited?

hinterface Lsteel ê ksteel = I4000 W ëm2 KM H0.001 m) / (37 W/mK) = 0.108

This is just over our 0.1 threshold, but because the steel is nearly gradient-free, 
we should pick interface-limited instead of conduction-limited.

So, we have a thin liquid film with heat loss across a resiting interface into a 
solid with no gradients = a thin casting with a cooled mold and interface resis-
tance is limiting = die casting.

To solve:
heat of fusion = interface resistance
r Hf   ds  = hinterface HTm -TairLdt
solve, with the B.C. that s=0 at t=0:
s = h  HTm -TairL t

Hf r

when s=50 mm, it will be solidified.

Tm=693 K, Tair = 300 K, H 3
f = 112 kJ/kg, r = 7140 kg ëm , so the time to solidify is:

t = 0.025 seconds

Problem 3
1. Coordinate system: spherical is appropriate here, with the origin at the center of the 
sphere. It would make sense to define f relative to the flow direction (vertical). Cylindrical 
works too, you just need different boundary conditions.

2. The problem to be solved is the full form of the Navier-Stokes Equation:
¶∂v = n “2v + F - “P
¶∂t r r

Initial condition:

We will assume steady state, so ¶∂v =0.
¶∂t

Boundary conditions: we need 6 B.C.’s, 2 for each axis:
1. at r=R, v = 0.
2. at rØ¶, v = vflow.
3. the speed of the flow, v, at (r, q, f) = v at (r, q, p-f) (a continuity B.C.)
4. independant of q, i.e., rotational symmetry: v at (r, q1, f) = v at (r, q2, fL where 1 and 2 
are any q values
5. v(r, q, f) = v(r, p+q, p-f)  (this is an inversion symmetry)
6. at f=p/2, the vr = 0 and vq = 0 (geometry: the flow points down around the middle of the 
particle)

or

Alternatively:
1. at r=R, v = 0.
2. at rØ¶, v = vflow.

3. as rØ¶, ¶∂v
¶∂r

= 0.

4. as rØ¶, ¶∂v
¶∂q

= 0.

5. as rØ¶, ¶∂v
¶∂f

= 0.

6. Any of the above B.C.’s not already included (B.C.’s #3-6 okay). 
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1. Coordinate system: spherical is appropriate here, with the origin at the center of the 
sphere. It would make sense to define f relative to the flow direction (vertical). Cylindrical 
works too, you just need different boundary conditions.

2. The problem to be solved is the full form of the Navier-Stokes Equation:
¶∂v
¶∂t

= n “2v + F
r
- “P

r

Initial condition:

We will assume steady state, so ¶∂v
¶∂t

=0.

Boundary conditions: we need 6 B.C.’s, 2 for each axis:
1. at r=R, v = 0.
2. at rØ¶, v = vflow.
3. the speed of the flow, v, at (r, q, f) = v at (r, q, p-f) (a continuity B.C.)
4. independant of q, i.e., rotational symmetry: v at (r, q1, f) = v at (r, q2, fL where 1 and 2 

5. v(r, q, f) = v(r, p+q, p-f)  (this is an inversion symmetry)
6. at f=p/2, the vr = 0 and vq = 0 (geometry: the flow points down around the middle of the 
particle)

or

Alternatively:
1. at r=R, v = 0.
2. at rØ¶, v = vflow.

3. as rØ¶, ¶∂v =
¶∂r

0.

4. as rØ¶, ¶∂v = 0.
¶∂q

5. as rØ¶, ¶∂v = 0.
¶∂f

6. Any of the above B.C.’s not already included (B.C.’s #3-6 okay). 

Problem 4
What is different?
The diffence between vapor and solid is that there is a “no shear” condition for a 
fluid-vapor interface, whereas there is a “no slip” condition for a fluid-solid inter-
face. So, B.C. #1 listed above no longer applies, and is instead replaced by 
¶∂†v
¶∂t
§ = 0 at r=R.

The drawing will look more like this

: >

because the shear has to go to zero near the bubble, so the velocity gradient is 
flat near the bubble surface, and to conserve flow volume, it should flow faster at 
the bubble surface than the mean flow because the path it has to take is longer 
(Bernoulli’s principle).
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because the shear has to go to zero near the bubble, so the velocity gradient is 

the bubble surface than the mean flow because the path it has to take is longer 
(Bernoulli’s principle).

Problem 5
This problem may seem a bit nasty at first because the velocity points in the angular direction, but if you 
step back and think about it, here’s the big picture: you have a momentum source at the inner radius, 
and a momentum sink at the outer radius. That’s it! It is a radial geometry, no nasty q terms required.

Navier stokes:
 ¶∂vq  = m/r 1  ¶∂ (r ¶∂vq ) 
¶∂t r ¶∂r ¶∂r

There are no body forces, so only the viscous term.
The shear mixer is operating at steady-state:

0 =  ¶∂ (r ¶∂vq ) 
¶∂r ¶∂r

integrate:

Ÿ 0 „ r  =  Ÿ ¶∂(r ¶∂vq ) 
¶∂r

A = r ¶∂vq
¶∂r

separate variables:
A/r  ¶∂r = ¶∂vq
integrate again:
A ln(r) + B = vq

Boundary conditions:
1. At rin, vq = v0.
2. At rout, vq = 0.

Therefore,
A lnHrin) + B = v0  
and 
A lnHrout) + B = 0

Do some algebra to arrive at:
vq Ln=
v0

Hr êrout

LnHrinêrout

L

L

This problem is identical to the problem we solved in lecture 2, 1D heat trasfer through a pipe wall with 
a hot fluid inside and a cold ambient outside.

The solution was:
Q = LnHr êr1

LnHr2êr1

L

L

With boundary conditions:
at r = r1, T = T1.
at r = r2. T = T2.

Translation to fluid flow:
T Ø vq
T1 Ø 0
T2 Ø v0
r1 Ø rout
r2 Ø rin

Q = T - T1

T2 - T1
 Ø vq - 0

v0 - 0
 = vq

v0
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This problem may seem a bit nasty at first because the velocity points in the angular direction, but if you 
step back and think about it, here’s the big picture: you have a momentum source at the inner radius, 
and a momentum sink at the outer radius. That’s it! It is a radial geometry, no nasty q terms required.

Navier stokes:
 ¶∂vq
¶∂t

 = m/r 1
r
 ¶∂

¶∂r
(r ¶∂vq

¶∂r
) 

There are no body forces, so only the viscous term.
The shear mixer is operating at steady-state:

0 =  ¶∂

¶∂r
(r ¶∂vq

¶∂r
) 

integrate:

Ÿ 0 „ r  =  Ÿ ¶∂(r ¶∂vq
¶∂r

) 

A = r ¶∂vq
¶∂r

separate variables:
A/r  ¶∂r = ¶∂vq
integrate again:
A ln(r) + B = vq

Boundary conditions:
1. At rin, vq = v0.
2. At rout, vq = 0.

Therefore,
A lnHrin) + B = v0  
and 
A lnHrout) + B = 0

Do some algebra to arrive at:
vq
v0

= LnHr êroutL

LnHrinêroutL

This problem is identical to the problem we solved in lecture 2, 1D heat trasfer through a pipe wall with 
a hot fluid inside and a cold ambient outside.

The solution was:
Q = LnHr êr1L

LnHr2êr1L

With boundary conditions:

at r = r2. T = T2.

Translation to fluid flow:
T Ø vq
T1 Ø 0
T2 Ø v0
r1 Ø rout
r2 Ø rin

Q = T - T1   vq - 0Ø  = vq
T2 - T1 v0 - 0 v0

Problem 6
(a) This one is essentially out of the reading, but it is a useful excersize to do at 
some point, because particle settling is a very important concept in materials 
science. It is how you analyze the stability of a suspension.

All you have to do is balance the gravity force pulling down on a particle against 
the drag force resisting the sinking of the particle, and the bouyant force of the 
fluid supporting the particle.

Fgravity = m g = V rparticle g
Fbouyant = V rfluidg
Fdrag = flaminar A K

let Dr = Irparticle - rfluidM

Fgravity = Fkinetic +Fbouyant

V Dr g = flaminar A K

V = (4/3) p R3

& from notes, flaminar A K = 6 p m v R

(4/3) p R3Dr g = 6 p m v R

v 2 2
settling = 9 m

R Dr g

For a 1 micron ceramic particle (r º 2500 kg ëm3M  in water, the settling velocity 
is about 1 micron per second.

(b) If turbulant, the settling velocity would be:
V Dr g = fturbulant A K
(4/3) p R3Dr g = f  (p R2) (1/2 r v2)

solve for v:
(4/3) R Dr g = f  1/2 r v2

v = 8 R Dr g
3 r f

Reynold’s number:
Re = r v R

2 m

sub in our expression for v:
Re = 4Dr g R2

3 m f

Turbulance is encouraged by:
1. Larger Dr (i.e. denser particle)
2. Larger particle size (R)
3. Higher surface roughness (to increase f)
A lower fluid viscosity would also promote turbulance, but that isn’t a property of 
the particle.
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(a) This one is essentially out of the reading, but it is a useful excersize to do at 
some point, because particle settling is a very important concept in materials 
science. It is how you analyze the stability of a suspension.

All you have to do is balance the gravity force pulling down on a particle against 
the drag force resisting the sinking of the particle, and the bouyant force of the 
fluid supporting the particle.

Fgravity = m g = V rparticle g
Fbouyant = V rfluidg
Fdrag = flaminar A K

let Dr = Irparticle - rfluidM

Fgravity = Fkinetic +Fbouyant

V Dr g = flaminar A K

V = (4/3) p R3

& from notes, flaminar A K = 6 p m v R

(4/3) p R3Dr g = 6 p m v R

vsettling =
2

9 m
R2 Dr g

For a 1 micron ceramic particle (r º 2500 kg m3   in water, the settling velocity 

Problem 7
This is like problem 6, but with a 45 degree tilt, and the addition of the centrifugal 
force.  The force diagram on a RBC looks like this:

(b)
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is about 1 micron per second.

 If turbulant, the settling velocity would be:
V Dr g = fturbulant A K
(4/3) p R3Dr g = f  (p R2) (1/2 r v2)

solve for v:
(4/3) R Dr g = f  1/2 r v2

v = 8 R Dr g
3 r f

Reynold’s number:
Re = r v R

2 m

sub in our expression for v:
Re = 4Dr g R2

3 m f

Turbulance is encouraged by:
1. Larger Dr (i.e. denser particle)
2. Larger particle size (R)
3. Higher surface roughness (to increase f)
A lower fluid viscosity would also promote turbulance, but that isn’t a property of 
the particle.
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We also know that an RBC at the top of the test tube must fall 10 cm in 1 
minute, so v = 0.001667 m/s.

We
⁄

 will find the needed centrifugal force to settle the RBC:
F = 0 along the direction of the velocity vector

FKinetic +FBouy = FGravity +FCentrifugal

(6 p m v R) + rsolid V g sinHqL = rfluid V g sinHqL + rcentrifuge w
2 rsolid cosHqL

do some alegebra, and substitute V = (4/3) p R3, and r = rsolid , Dr = 
Hrsolid - rfluidL:

 = 4Dr g pR3 + 18 2 m pR vw 3 rcentrifuge r

plugging in values, we see that the centrifuge must have an angular velocity of 
at least 4.7 10-6 rpm, meaning that we essentially need no centrifuging to sepa-
rate RBCs from plasma. 

Why, then, do centrifuges always spin really fast (~3000 - 4000 rpm for 10 min-
utes) to separate blood cells from plasma? fl Our assumptions were bad. The 
RBCs are NOT non-interacting, as they make up about 45% of the blood vol-
ume, so it can be very difficult for the plasma to flow around the RBCs when the 
viscinity is packed with other particles. Also, they are suspended in a polar fluid 
(~water), which has other consequences that we will discuss in coming lectures!
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