
Pset 2 solutions
3.044 2013

Problem 1
Recall our old friend from pset 1, the solution to the heating/cooling of a 1D 
sheet with fixed temperature boundary conditions:
theta1D@x_, t_, nmax_D :=

SumA4 ê HPi nL Sin@n Pi 2 2xD ExpA-n Pi tE, 8n, 1, 2 nmax - 1, 2<E

To produce the solution for a infinite square prism, we can use superposition, 
and Q(x, y, t) = Q(x, t) Q(y, t). To get Q(y, t), we can simply swap out y for x 
because the boundary conditions are the same in x and y. So, Q(x, y, t) is:
theta2D@x_, y_, t_, nmax_ :=

SumA4

A

ê

ê

HPi

H

nL Sin@n Pi xD Exp

D

A-n2 Pi2

L @ D A

tE,

E

8n

8

, 1, 2 nmax - 1, 2

Sum 4 Pi n Sin n Pi y Exp -n2 Pi2 t , n, 1, 2 nmax - 1,

<

2

E

<E

To produce the solution for a cube, we can use superposition again: Q(x, y, z, 
= Q(x, t) Q(y, t) Q(z, t). 
theta3D

SumA4

@

A

ê

ê

H

x_, y_, z_, _, nmax_D :=

Pi nL

t

H L

Sin n Pi Exp n2 2x - Pi t , n, 1, 2 nmax - 1, 2

Sum

A

4

ê

Pi n

L

Sin n Pi y Exp -n2 Pi2

H

t , n, 1, 2 nmax - 1, 2

Sum 4 Pi n Sin

@

@

@n Pi

D

zD

D

Exp

A

A

A

-n2 Pi2

E

tE

E

,

8

8

8

n, 1, 2 nmax - 1,

<

2

E

<

<

E

E

Now to plot it, using contours, at various times. Assuming that we are cooling a
initally hot body, hot colors = hot contours (pink is hottest) and cold colors = col
contours (purple is coldest) (flip the color scheme if we are heating an initally 
cold body):
First, define the desired contours, contour colors, dimensionless times, and how many terms to use in
the series at each time:

contours
8
=

Purple
80.01, 0.1, 0.25, 0.5, 0.75, 0.9, 0.99 ;

colors =
8

, Blue, Green, Yellow
<

, Orange, Red, Pink ;
times = 0.001, 0.005, 0.01, 0.1, 0.2 ;
terms = 830, 20, 10, 2, 2<;

<
<

Then make a list of equations at each time:

t) 

n 
d 
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plot1d
8

= Table
j, Length

plot2d = Table

@

@ theta1D x, t, terms
times
H

Length

theta2D

D< 8

@

,

@contours

x, y t, terms

@@jDDD ã
, i,

j

D<

contours
D

Ø times
;

D D

D

<

D ã contours

@@iDDL . t j ,

8 @

@ H

< 8

@

@

@@ D

D

@@i . t Ø times j ,
j, Length times , i, Length contours ;

ê @@ DD

plot3da
@

=
Table
8

Htheta3D
@

@x,
D<

y,
8

0.25, t, terms
@

@@j

DDL ê @@ DD

j, Length times , i, Length contours

plot3db =
Table theta3D x, y, 0.5, t, terms j

DD

D

D

<

ã
D

contours@@i
;

contours i

DDL ê. t Ø times

@ H

@

ã . t times

@@j

j

DD,

8

Ø ,
j, Length

@

times , i, Length contours ;

plot3d
8

= Table
@

theta3D x, y, z, t, terms j ã contours i
j, Length times

@

D< 8 @

@@ DD

<D

@@ DDL ê @@ DD

H

D<,

D

D

Create some labels:

8

@

i, Length@contours
@

D

@

<D

DDD

;
@@ DDL ê. t Ø times@@jDD,

fontsize = 28;
labelRow

@

= 8Text@

@

@

@

Style@"Time"
DD

, fontsize ,
Text Style

DD

8

"1D", @

@

fontsize

@

, Text Style
DD

"2D", fontsize ,
Text

@

Style z =

@

"3D, 0.25", fontsize

DD

,
@

Text@Style@"3D, z = 0.5", fontsize ;
labelColumn = Text Style "t = fontsize ,

Text
@

0.001",
Style "t = 0.005", fontsize , Text Style "t = 0.01 ,

0.1

DD

", fontsize
Text Style "t = ", fontsize , Text Style "t = 0.2", fontsize ;

DD<

And put it all together

D

GraphicsGrid@

 in a graphics grid:

@

D

@ DD

8

Join

@

labelRow , Transpose

DD @ @ DD<

labelColumn, Table ContourPlot j , x, 0, 1 1 ,
ContourStyle

@8

@

y,
Ø

@

Evaluate plot1d , 0,
colors, ContourLabels Ø True , j, Length times ,

Table

@

ContourPlot Evaluate plot2d , x, y, 0, 1
ContourStyle Ø

@

j 0, 1 , ,
colors

@

<

, ContourLabels

@

@

@

Ø True

@

, j, Length times ,
Table

@

ContourPlot

@

Evaluate plot3da j , x, 0,

@

1

DDD

, y,

8

0, 1 ,

< 8 <

ContourStyle Ø colors, ContourLabels
Evaluate

@

plot3db

@@

j

DDD

Ø
Table ContourPlot ,

8

True

D @

x,

D

,

8

0,

8

j,
1

< 8

Length
0,

@

times
, y, 1

<

D<D

ContourStyle Ø colors, ContourLabels
j, Length times , ImageSize

@ @@ DDD 8 < 8 <

D<D

@ @@

,

8 Ø

DDD

Ø True
Full

8

D 8

D

D

< 8 <

D<D

@ D<D <DD

,
,

@
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Notice that as you add dimensions, the heat transfer goes faster. This makes 
sense: adding ways for heat to get in/out should accelerate the process. In 3D, 
that the center is a little behind the z = 0.25 because it takes longer for heat to 
penetrate all the way to the center.

Problem 2
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This is still a little too cold, so try a later time of 18000 sec:

Fox = a t
Lx

2  = I5.6 x 10-6 m2ësM H18 000 sL

H0.125 mL2
 = 6.5

Foy = a t
Ly

2  = I5.6 x 10-6 m2ësM H18 000 sL

H0.5 mL2
 = 0.40

read Q’s off the chart for the respective Biot numbers:
Qx º 0.14
Qy º 0.77
Qcenter = Qx Qy = 0.11

This is still just a little too cold, so try a later time of 19000 sec:

Fox = a t
Lx

2  = I5.6 x 10-6 m2ësM H19 000 sL

H0.125 mL2
 = 6.8

Foy = a t
Ly

2  = I5.6 x 10-6 m2ësM H19 000 sL

H0.5 mL2
 = 0.43

read Q’s off the chart for the respective Biot numbers:
Qx º 0.13
Qy º 0.75
Qcenter = Qx Qy = 0.10

This time is equivalent to 5.3 hours. 
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Problem 2
Problem: Find the time required to heat a 25cm by 1m (long in the third
sion) steel billet to 900C at its center in a 1000C furnace.

Geometry: the center of the slab is at (0, 0). Lx = 0.125m, Ly = 0.5m.

BC’s: There are a total of 4 boundary conditions. Convection at x = Lx 

Ly, symmetry ¶∂T = ¶∂T
¶∂

0 and =
¶∂

0  at x = 0 and y = 0.
x y

IC: at t = 0, T ~

J

 0C inside the billet,

N

 the furnace is at 1000C (just like we
assumed in class)

Govening equation: 
h L 100 W m2 KBi x

x = =
k

Biy

H35
ë

W êmK
h L = y =

I

100 W m2 K
k 35 W mK

M H0.125 mL  = 0.36
0.5 m

, we

I

 mu
H

st

ë  = 1.4

Therefore  u
ê

se

M H

L

L

 tran

L

sient solutions from the charts for both dim
plus superposition. 
Q(x, y, t) = Q(x, t) Q(y, t)

Use the Poirier & Geiger chart for a 1D plate, x/L = 0, for both dimensions.

Solve:
The goal is to find when Q(x, y, t) = 0.1. Take a guess that it will be less time 
than it was for the 1D case we analyzed in class, which was 22300 sec, so try 
15000 sec:

Fox = a t  = I5.6 x 10
H

-6 m2 s

L 2
x 0.125

ë

m

M

L

H15 000 s
2

L  = 5.4

a xFoy = t 5.6 10-6 m2 s

L 2  = 
y

I

H0.5 m

ë

L

M
2

H15 000 sL  = 0.34

read Q’s off the chart for the respective Biot numbers:
Qx º 0.18
Qy º 0.82
Qcenter = Qx Qy = 0.15

 dimen-

and y = 

 

ensions, 
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Problem: Find the time required to heat a 25cm by 1m (long in the third dimen-
sion) steel billet to 900C at its center in a 1000C furnace.

Geometry: the center of the slab is at (0, 0). Lx = 0.125m, Ly = 0.5m.

BC’s: There are a total of 4 boundary conditions. Convection at x = Lx and y = 

Ly, symmetry J ¶∂T
¶∂x

= 0 and ¶∂T
¶∂y

= 0N at x = 0 and y = 0.

IC: at t = 0, T ~ 0C inside the billet, the furnace is at 1000C (just like we 
assumed in class)

Govening equation: 

Bix = h Lx

k
=

I100 Wëm2 KM H0.125 mL

H35 W êmKL
 = 0.36

Biy = h Ly

k
=

I100 Wëm2 KM H0.5 mL

H35 W êmKL
 = 1.4

Therefore, we must use transient solutions from the charts for both dimensions, 
plus superposition. 
Q(x, y, t) = Q(x, t) Q(y, t)

Use the Poirier & Geiger chart for a 1D plate, x/L = 0, for both dimensions.

Solve:
The goal is to find when Q(x, y, t) = 0.1. Take a guess that it will be less time 
than it was for the 1D case we analyzed in class, which was 22300 sec, so try 
15000 sec:

Fox = a t
Lx

2  = I5.6 x 10-6 m2ësM H15 000 sL

H0.125 mL2
 = 5.4

Foy = a t
Ly

2  = I5.6 x 10-6 m2ësM H15 000 sL

H0.5 mL2
 = 0.34

read Q’s off the chart for the respective Biot numbers:
Qx º 0.18
Qy º 0.82
Qcenter = Qx Qy = 0.15

This is still a little too cold, so try a later time of 18000 sec:
-6 2

Fo  = a t 5.6 x 10 m s 18 000 s
x 2  =  =

L 2  6.5
x

I

H0.125
ë

m

M

L

H L

I5.6 x 10-

H

6 m2

Fo  = a
y  t

2  = 
y

ësM H18 000 s

L 0.5 mL2
L  = 0.40

read Q’s off the chart for the respective Biot numbers:
Qx º 0.14
Qy º 0.77
Qcenter = Qx Qy = 0.11

This is still just a little too cold, so try a later time of 19000 sec:
a t 5.6 x 10-6 m2 s 19 000 sFox =  =  = 6.8
L 2 2

x

I

H0.125
ë

m

M

L

H L

I5.6 x 10-

H

6 m2
a sFoy = t

2  = 
Ly

ë

L

M H19 000 s

0.5 m 2

L  = 0.43

read Q’s off the chart for the respective Biot numbers:
Qx º 0.13
Qy º 0.75
Qcenter = Qx Qy = 0.10

This time is equivalent to 5.3 hours. 
In class, we learned that the time to heat a 25cm square billet (long in the third 
dimension) is about 3.1 hours, and the time to heat a 25cm thick billet (long in 
the other two dimensions) is about 6.2 hours. Our analysis showed that the time 
to heat a 25cm x 100cm billet (long in the third dimension) is in between these 
values, at 5.3 hours.

3.1hrs 5.3 hrs 6. hrs

Time to reach 900ÎC:

These times make sense because the contribution in heat from the sides 
decreases as as the width of the billet increases. 

Problem 3
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Problem 3
6     pset2solns.nb

We want a solution for a 1D slab, with uniform heat generation within, and con-
vection on the surfaces.

Carslaw & Jaeger, Chapter on linear heat flow in a solid bounded by two planes, 
section 3.14: the slab with heat produced within it, equation 12, p. 132:

T = 1
2 k L

:Hx+LL Ÿ
L„hx Ÿ

h x- HxL + Hx-LA „ LL Ÿ
x „h Ÿ

h x-LAH L „x-L >

where T = temperature, k = thermal conductivity, A(x) is the rate of heat produc-
tion (which we will take to be a constant in our case that only depends on the 
current), and L = sheet thickness. h and x are “dummy” variables for integration, 
so they effectively go away and don’t mean anything. You are not required to do 
the next bit, however, it is cool:

In our case, A(x) = A = constant rate of heat production, so  
Ÿ

x „h Ÿ
h
-LAHxL „x =-L A Ÿ

x
Hh + LL „h = A Ih2 ë2 + L hM h=x

-L h=-L  = 
A Ix2 ë2 + L x + L2 ë2M

and 

Ÿ
L L„h Ÿ

h AHxL „x =x Ÿx Hh + LL „h =-L A

A Ih2 ë2 + L hM h=L
h=x

Therefore,
T = 1

2 k L
9Hx+LL A I-x2 ë2 - L x + 3 L2 ë2M + Hx-LL A Ix2 ë2 + L x + L2 ë2M=

   = A 3 - 2
2 k L

9L L x =

   = A 9L2 -
2 k

x2=

where A is the rate of heat generation, so it is just a parabola! This is a solution 
that you can do by hand, it turns out.

Problem 4
We want a solution for a single wall, so that is a 1D slab, with a sinusoidally 
varying temperature at one surface.

C & J, Chapter on linear heat flow in a solid bounded by two parallel planes, 
Section 3.6: the slab with periodic surface temperature, equation 5, page 105:

= A I-x2 ë2 - L x + 3 L2 ë2M.
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We want a solution for a single wall, so that is a 1D slab, with a sinusoidally 
varying temperature at one surface.

C & J, Chapter on linear heat flow in a solid bounded by two parallel planes, 

-laser spot has radius a
-symmetry at r = 0: ¶∂T/¶∂r = 0.

pset2solns.nb     7

n 1 n n2

T = A sin( t +  + ) + 2  H- L Ik p2 sin e - wL2
¶ cos e

w e f pk sin npx -kn2 p2 t L2

n=1 k2 n4 e + Tinsidep4+w2 L2

M

L

Where T =
8

 temperature, L = wall thickness, the temperature is kept at Tinside at 
x=0, A = cosh 2 kx + cos 2 kx 1 2

ë

, k k 2f = arg cosh x 1+i , = w , e = phase shift 
cosh 2 kl + cos 2 kl

⁄

cosh kl 1+i 2 k

(which we may take to be zero), w = frequency of temperature variation (which 
we take to be 1 day), and
you’d expect: if the surface temperature

=

 k

ê

 = thermal diffusivity.

:
H

H

L

L

 Note that this is essentially what 
 is sinusoidal,

>

 the

I

 solution

M

 is sinusoidal 
in space, but exponentially damped in time, i.e., the effects of the outside temper-
ature are exponentially damped as you move into the thickness of the wall.

Problem 5
We want a solution for a solid sphere, with uniform heat generation, and a radia-
tive boundary condition at the surface, because the antenna can cool by radiat-
ing into the vacuum of space, which is at ~0 K. There is no convection in space, 
so our answer better not have a convective heat transfer coefficient in it.

C & J, chapter on the flow of heat in a sphere and cone, section 9.8: the sphere 
0 § r < a with heat generation, equation 19, page 245:

T = A0 9hIa2 r2M 2 a= 2 h a2 A
2

- + - 0

6 h k r k
 ⁄¶ sin

n=1 a 2 A

r a e-k an t
n

a2 a 2
n n + a h Ha h-1LE sin a an

where T = temperature, A0= constant heat generation, h = M number divided by 
the characteristic length so that it has units of 1/m (note: this is really hard to 
find! It’s kind of explained on page 19, but it takes some digging and thinking), k 
= themal conductivity, k = thermal diffusivity, a = radius of the antenna, r = radial 
coordinate, and an are the roots of 
a a cot a a = 1 - a h 
for n = 1, 2, .... 

Problem 6

i. Geometry & BCs

-Center of laser spot is origin
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: >

ii. Quantitative simplification

Calculation the Biot number for the z direction:

Bi = h L / 2 k = (10 W ëm2K) (0.05m) / (35 W/mK) = 0.014

The Biot number is small -> we can neglect heat transfer via convection, all heat 
transfer will occur in the interior of the steel slab.

Therefore, look for a solution T(r, z). Change the difficult convective boundary 
condition to zero flux at the z=0, r>a surface.

Note: some folks might be confused why our solution will still depend on z, even 
though the Biot number is small in z. This is because the Biot number compares 
conduction in z with convection at the surface. Convection is so slow that it won’t 
contribute at all to the transfer of heat. However, conduction in z occurs at the 
exact same speed as conduction in r because the slab is isotropic. So, if our 
solution depends on r, it better depend on z too, because conduction is equally 
fast in r and z. All that we can conclude from a small Biot number here is that we 
can neglect heat loss to the air, all heat will be dissipated internally.

8     pset2solns.nb

-laser spot has radius a
-symmetry at r = 0: ¶∂T/¶∂r = 0.
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Calculation the Biot number for the z direction:

Bi = h L / 2 k = (10 W ëm2K) (0.05m) / (35 W/mK) = 0.014

The Biot number is small -> we can neglect heat transfer via convection, all heat 
transfer will occur in the interior of the steel slab.

Therefore, look for a solution T(r, z). Change the difficult convective boundary 
condition to zero flux at the z=0, r>a surface.

Note: some folks might be confused why our solution will still depend on z, even 
though the Biot number is small in z. This is because the Biot number compares 
conduction in z with convection at the surface. Convection is so slow that it won’t 
contribute at all to the transfer of heat. However, conduction in z occurs at the 
exact same speed as conduction in r because the slab is isotropic. So, if our 
solution depends on r, it better depend on z too, because conduction is equally 

pset2solns.nb     9

can neglect heat loss to the air, all heat will be dissipated internally.

iii. Find the steady-state solution, plot it, and identify melt (if any)

What is the solution going to look like? Many people expect that you should treat 
the laser as a point source and treat the body as finite in z. But, the thing that 
sets the relevant length scale in any heat transfer problem is not the dimensions 
of the objects involved, but the dimensions of the heat transfer process. The 
heat is coming in over a little disk of radius 0.1mm and spreading radially out-
ward in r and z. It doesn’t care about the surface at z = 10cm because the length 
scale of the actual heat transfer is orders of magnitude smaller. As far as the 
heat is concerned, that surface is too far away to matter, so you can treat it a 
semi-infinite in z. 

This relevant solution can be found in Carslaw & Jaeger, the chapter on the flow 
of heat in regions bounded by surfaces of the cylindrical coordinate system, 
section 8.2: the steady temperature in an infinite or semi-infinite medium due to 
heat supply over a circular area, page 216, equation 14, “the region z > 0 with 
constant flux Q over the circular area r < a and zero flux over r > a”:

T = Q a ¶e-l z J0 l J1k 0 r

where T = temperature, Q = heat
tivity, l =

Ÿ

 dummy variable,

H L Hl a l „l

 flux over the circle 0 < r < a, k = thermal conduc-
 z =

L ê

 coordinate into the slab, r = radial coordinate, J0, 
J1= zeroth and first kind Bessel J functions. Now, plot this result:
The heat flux is equal to the wattage of the laser divided by the laser spot area 
to yield W m2 :

Q 2= 1000 0.0001 Pi

3.1831 10µ 10

Create a

ë

 f

I

ë

unction T(r,

M

 z) using our solution:
temperature r_, z_ := Q 0.0001 2 µ 37

NIntegrate
@

@Exp@-
D

l zD BesselJ@0
ê

,
H

l rD BesselJ
L

@1, l 0.0001D 1 ê l, 8l, 0, 1000

Plot T(r, z):
trz

<D

8

= Plot@Table temperature@r,
r, 0, 0.005<

@

, AxesLabel Ø 8

zD,
Style

8

@

z,
"r

8

H

0, 0.0005, 0.001, , 0.005 ,
mL

0.0025
", 20D, Style@"T H°CL", 20D<D

<

;
<D
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z=0

z=0.5mm

z=1mm

z=2.5mm

z=5mm

0.001 0.002 0.003 0.004 0.005
r m

500

1000

1500

2000

H L

T H°CL

In the above plot, we see that the temperature exceeds the melting point, 
1500C, for about 0.75 mm into the slab in z and for a radius out to about 2.2 mm 
at the surface (ignoring the latent heat, which would make the melt puddle even 
smaller). There is no way this laser could cut this slab of steel.
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