From Many-Body to Single-Particle: Quantum Modeling of Molecules

Jeffrey C. Grossman

IIIIT
Department of Materials Science and Engineering Massachusetts Institute of Technology

Part IITopics

I. It's a Quantum World:The Theory of Quantum Mechanics
3. From Many-Body to Single-Particle; Quantum Modeling of Molecules
4. Application of Quantum Modeling of Molecules: Solar Inermal Fuels
5. Application of Quantum Modeling of Molecules: Hydrogen Storage
6. From Atoms to Solids
7. Quantum Modeling of Solids: Basic Properties
8. Advanced Prop. of Materials:What else can we do?
9. Application of Quantum Modeling of Solids: Solar Cells Part I

IO. Application of Quantum Modeling of Solids: Solar Cells Part II
| |. Application of Quantum Modeling of Solids: Nanotechnology

Motivation

Image adapted from Wikimedia Commons, http://commons.wikimedia.org.

Image of NGC 604 nebula is in the public domain. Source: Hubble Space Telescope Institute (NASA). Via Wikimedia Commons.

Today: many electrons to describe materials.

Lesson outline

- Review
- The Many-body Problem
- Hartree and Hartree-Fock
- Density Functional Theory
- Computational Approaches
- Modeling Software
- PWscf

Review: Schrödinger

 equation

 equation}

H time independent: $\quad \psi(\vec{r}, t)=\psi(\vec{r}) \cdot f(t)$

$$
i \hbar \frac{\dot{f}(t)}{f(t)}=\frac{H \psi(\vec{r})}{\psi(\vec{r})}=\text { const. }=\boldsymbol{E}
$$

$$
H \psi(\vec{r})=E \psi(\vec{r}) \quad \psi(\vec{r}, t)=\psi(\vec{r}) \cdot e^{-\frac{i}{\hbar} E t}
$$

time independent Schrödinger equation stationary Schrödinger equation

Review:The hydrogen atom

stationary

Schrödinger equation $\quad \boldsymbol{H} \psi=\boldsymbol{E} \psi$

$$
[\boldsymbol{T}+\boldsymbol{V}] \boldsymbol{\psi}=\boldsymbol{E} \psi
$$

Radial Wavefunctions

for a Coulomb V(r)

Angular Parts

$$
\begin{aligned}
& Y_{0}^{0}(\theta, \varphi)=\frac{1}{4 \pi} \\
& Y_{1}^{ \pm 1} \theta, \varphi=\boldsymbol{m} \sqrt{\frac{3}{8 \pi}} \sin \theta e^{ \pm i \varphi} \\
& Y_{1}^{0}\left(\theta, \varphi=\sqrt{\frac{3}{4 \pi}} \cos \theta\right. \\
& Y_{2}^{ \pm 2}\left(\theta, \varphi=\sqrt{\frac{15}{32 \pi}} \sin ^{2} \theta e^{ \pm \pm i \varphi}\right. \\
& Y_{2}^{ \pm 1}\left(\theta, \varphi=\boldsymbol{m} \sqrt{\frac{15}{8 \pi}} \sin \theta \cos \theta e^{ \pm i \varphi}\right. \\
& Y_{2}^{0}\left(\theta, \varphi=\sqrt{\frac{5}{16 \pi}}\left(3 \cos ^{2} \theta-1\right)\right.
\end{aligned}
$$

Image by MIT OpenCourseWare.

Review:The hydrogen atom

quantum numbers

n	I	m_{1}	Atomic Orbital	$\Psi_{n \mid m_{1}}(r, \theta, \phi)$
1	0	0	1s	$\frac{1}{\sqrt{\pi} \mathrm{a}_{0}^{3 / 2}} \mathrm{e}^{-r / a_{0}}$
2	0	0	2s	$\frac{1}{4 \sqrt{2 \pi} a_{0}^{3 / 2}}\left[2-\frac{r}{a_{0}}\right] e^{-r / 2 a_{0}}$
2	1	0	2p	$\frac{1}{4 \sqrt{2 \pi} a_{0}^{3 / 2}} \frac{r}{a_{0}} e^{-r / 2 a_{0}} \cos \theta$
2	1	± 1	2p	$\frac{1}{8 \sqrt{\pi} a_{0}^{3 / 2}} \frac{r}{a_{0}} e^{-r / 2 a_{0}} \sin \theta e^{ \pm i \phi}$
$a_{0}=\frac{\hbar^{2}}{m e^{2}}=.0529 n m=\text { first Bohr radius }$				

l and m versus n

Review:The hydrogen atom

Review:The hydrogen atom

Continuum Spectrum

Emission Line Spectrum

Absorption Line Spectrum
(C) unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Review: Next? Helium

r_{2}

$$
H \psi=E \psi
$$

$$
\left[H_{1}+H_{2}+W\right] \psi\left(\vec{r}_{1}, \vec{r}_{2}\right)=E \psi\left(\vec{r}_{1}, \vec{r}_{2}\right)
$$

$$
\left[T_{1}+V_{1}+T_{2}+V_{2}+W\right] \psi\left(\vec{r}_{1}, \vec{r}_{2}\right)=E \psi\left(\vec{r}_{1}, \vec{r}_{2}\right)
$$

$$
\left.\left.\left[-\frac{\hbar^{2}}{2 m} \nabla_{1}^{2}-\frac{e^{2}}{4 \pi \epsilon_{0} r_{1}}-\frac{\hbar^{2}}{2 m} \nabla_{2}^{2}-\frac{e^{2}}{4 \pi \epsilon_{0} r_{2}}+\frac{e^{2}}{4 \pi \epsilon_{0} r_{12}}\right] \psi\right) r_{1}, r_{2}\right)=E \psi\left(r_{1}, r_{2}\right)
$$

cannot be solved analytically

Review: Spin

new quantum number: spin quantum number for electrons: spin quantum number can ONLY be

Everything is spinning ...

Image courtesy of Teresa Knott.

Everything is spinning ...

In quantum mechanics particles can have a magnetic moment and a "spin"

spinning charge

Everything is spinning ...

conclusion from the Stern-Gerlach experiment

for electrons: spin can ONLY be

Spin History
I think you and Whberbeck
have bean very lucky to get your spinning election published and talked about before Pauli heard of it. It appears that more than a year ago Kromig believed in the spinning election and worked out something; the fiat person be showed it to was Pauli. Pauli ridiculed the whole thing so much that the fist penown become also the last and no one else beard anything of At. Which all goer to show that the infallibility of the Deity does not extend to his self styled vicar on earth.

Part of a letter by L.H. Thomas to Goudsmit on March 251926 (source: Wikipedia). from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Pauli's exclusions

principle

Two electrons in a system cannot have
the same quantum numbers!

Pauli Exclusion Principle

"Already in my original paper I stressed the circumstance that I was unable to give a logical reason for the exclusion principle or to deduce it from more general assumptions. I had always the feeling, and I still have it today, that this is a deficiency."

W. Pauli, Exclusion Principle and Quantum

Mechanics, Nobel prize acceptance lecture, Stockholm (1946).

Periodic table

Ryhmä \rightarrow \downarrow Jakso	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 H																	2 He
2	$\begin{gathered} \hline 3 \\ \mathrm{Li} \end{gathered}$	$\begin{gathered} 4 \\ \mathrm{Be} \end{gathered}$											5	C	7 N	8	F	10 Ne
3	$\begin{aligned} & 11 \\ & \mathrm{Na} \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \\ & \mathrm{Mg} \\ & \hline \end{aligned}$											$\begin{aligned} & 13 \\ & \mathrm{Al} \\ & \hline \end{aligned}$	$\begin{gathered} 14 \\ \mathrm{Si} \end{gathered}$	$\begin{gathered} 15 \\ \mathrm{P} \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} \hline 17 \\ \mathrm{Cl} \\ \hline \end{gathered}$	$\begin{aligned} & 18 \\ & \mathrm{Ar} \\ & \hline \end{aligned}$
4	$\begin{gathered} 19 \\ \mathrm{~K} \end{gathered}$	$\begin{aligned} & 20 \\ & \mathrm{Ca} \end{aligned}$	$\begin{aligned} & 21 \\ & \mathrm{Sc} \\ & \hline \end{aligned}$	$\begin{gathered} 22 \\ \mathrm{Ti} \end{gathered}$	$\begin{aligned} & 23 \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & 24 \\ & \mathrm{Cr} \end{aligned}$	$\begin{aligned} & 25 \\ & \mathrm{Mn} \\ & \hline \end{aligned}$	$\begin{aligned} & 26 \\ & \mathrm{Fe} \end{aligned}$	$\begin{aligned} & 27 \\ & \mathrm{Co} \end{aligned}$	$\begin{aligned} & 28 \\ & \mathrm{Ni} \end{aligned}$	$\begin{aligned} & 29 \\ & \mathrm{Cu} \end{aligned}$	$\begin{aligned} & 30 \\ & \mathrm{Zn} \end{aligned}$	$\begin{aligned} & 31 \\ & \mathrm{Ga} \end{aligned}$	$\begin{aligned} & 32 \\ & \mathrm{Ge} \end{aligned}$	$\begin{aligned} & 33 \\ & \text { As } \end{aligned}$	$\begin{aligned} & 34 \\ & \mathrm{Se} \end{aligned}$	$\begin{aligned} & 35 \\ & \mathrm{Br} \end{aligned}$	$\begin{aligned} & 36 \\ & \mathrm{Kr} \end{aligned}$
5	$\begin{aligned} & 37 \\ & \mathrm{Rb} \end{aligned}$	$\begin{aligned} & 38 \\ & \mathrm{Sr} \end{aligned}$	$\begin{gathered} 39 \\ Y \end{gathered}$	$\begin{aligned} & 40 \\ & \mathrm{Zr} \end{aligned}$	$\begin{aligned} & 41 \\ & \mathrm{Nb} \end{aligned}$	$\begin{aligned} & 42 \\ & \text { Mo } \end{aligned}$	$\begin{aligned} & 43 \\ & \mathrm{Tc} \end{aligned}$	$\begin{aligned} & 44 \\ & \mathrm{Ru} \\ & \hline \end{aligned}$	$\begin{aligned} & 45 \\ & \mathrm{Rh} \end{aligned}$	$\begin{aligned} & 46 \\ & \mathrm{Pd} \end{aligned}$	$\begin{aligned} & 47 \\ & \mathrm{Ag} \end{aligned}$	$\begin{aligned} & 48 \\ & \mathrm{Cd} \end{aligned}$	$\begin{aligned} & 49 \\ & \text { ln } \end{aligned}$	$\begin{aligned} & 50 \\ & \mathrm{Sn} \end{aligned}$	$\begin{aligned} & 51 \\ & \mathrm{Sb} \end{aligned}$	$\begin{aligned} & 52 \\ & \mathrm{Te} \end{aligned}$	$\begin{gathered} 53 \\ 1 \end{gathered}$	$\begin{aligned} & 54 \\ & \mathrm{Xe} \end{aligned}$
6	$\begin{aligned} & 55 \\ & \mathrm{Cs} \end{aligned}$	$\begin{aligned} & 56 \\ & \mathrm{Ba} \end{aligned}$		$\begin{aligned} & \hline 72 \\ & \mathrm{Hf} \end{aligned}$	$\begin{aligned} & 73 \\ & \mathrm{Ta} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 74 \\ & \mathrm{~W} \end{aligned}$	$\begin{aligned} & 75 \\ & \mathrm{Re} \end{aligned}$	$\begin{aligned} & \hline 76 \\ & \text { Os } \end{aligned}$	$\begin{aligned} & \hline 77 \\ & \mathrm{lr} \\ & \hline \end{aligned}$	$\begin{aligned} & 78 \\ & \mathrm{Pt} \end{aligned}$	$\begin{aligned} & \hline 79 \\ & \mathrm{Au} \end{aligned}$	$\begin{aligned} & 80 \\ & \mathrm{Hg} \end{aligned}$	$\begin{gathered} 81 \\ \mathrm{TI} \\ \hline \end{gathered}$	$\begin{aligned} & 82 \\ & \mathrm{~Pb} \end{aligned}$	$\begin{aligned} & 83 \\ & \mathrm{Bi} \end{aligned}$	$\begin{aligned} & 84 \\ & \text { Po } \end{aligned}$	85 At	86 Rn
7	$\begin{aligned} & 87 \\ & \mathrm{Fr} \\ & \hline \end{aligned}$	$\begin{aligned} & 88 \\ & \mathrm{Ra} \\ & \hline \end{aligned}$		$\begin{array}{\|c} \hline 104 \\ \mathrm{Rf} \end{array}$	$\begin{array}{\|c} \hline 105 \\ \mathrm{Db} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 106 \\ \mathrm{Sg} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 107 \\ \mathrm{Bh} \\ \hline \end{array}$	$\begin{array}{\|c} \hline 108 \\ \mathrm{Hs} \end{array}$	$\begin{array}{\|c\|} \hline 109 \\ \mathrm{Mt} \end{array}$	$\begin{array}{\|c} \hline 110 \\ \text { Ds } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 111 \\ \mathrm{Rg} \\ \hline \end{array}$	$\begin{array}{\|l} \hline 112 \\ \text { Uub } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 113 \\ \text { Uut } \end{array}$	$\begin{array}{\|c} \hline 114 \\ \mathrm{FI} \\ \hline \end{array}$	$\begin{array}{\|l} \hline 115 \\ \text { Uup } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 116 \\ \mathrm{LV} \end{array}$	$\begin{aligned} & 117 \\ & \text { Uus } \end{aligned}$	$\begin{array}{\|l} \hline 118 \\ \text { Uuo } \\ \hline \end{array}$
		tan		$\begin{aligned} & 57 \\ & \mathrm{La} \end{aligned}$	$\begin{aligned} & 58 \\ & \mathrm{Ce} \end{aligned}$	$\begin{aligned} & 59 \\ & \mathrm{Pr} \end{aligned}$	$\begin{aligned} & 60 \\ & \mathrm{Nd} \end{aligned}$	$\begin{aligned} & 61 \\ & \mathrm{Pm} \end{aligned}$	$\begin{array}{\|l\|} \hline 62 \\ 5 m \end{array}$	$\begin{aligned} & 63 \\ & \mathrm{Eu} \end{aligned}$	$\begin{aligned} & 64 \\ & \mathrm{Gd} \end{aligned}$	$\begin{aligned} & 65 \\ & \mathrm{~Tb} \end{aligned}$	$\begin{aligned} & 66 \\ & \text { Dy } \end{aligned}$	$\begin{aligned} & 67 \\ & \mathrm{Ho} \end{aligned}$	$\begin{aligned} & 68 \\ & \mathrm{Er} \end{aligned}$	$\begin{aligned} & 69 \\ & \mathrm{Tm} \end{aligned}$	$\begin{aligned} & 70 \\ & \mathrm{Yb} \end{aligned}$	$\begin{aligned} & 71 \\ & \mathrm{Lu} \end{aligned}$
		Aktin	idit	$\begin{aligned} & \hline 89 \\ & \text { Ac } \\ & \hline \end{aligned}$	$\begin{aligned} & 90 \\ & \text { Th } \end{aligned}$	$\begin{aligned} & 91 \\ & \mathrm{~Pa} \\ & \hline \end{aligned}$	$\begin{gathered} 92 \\ \mathrm{U} \end{gathered}$	$\begin{aligned} & 93 \\ & \mathrm{~Np} \end{aligned}$	$\begin{aligned} & 94 \\ & \mathrm{Pu} \end{aligned}$	$\begin{aligned} & 95 \\ & \mathrm{Am} \end{aligned}$	$\begin{aligned} & \hline 96 \\ & \mathrm{Cm} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 97 \\ & \mathrm{Bk} \end{aligned}$	$\begin{aligned} & 98 \\ & \text { Cf } \end{aligned}$	$\begin{aligned} & 99 \\ & \text { Es } \end{aligned}$	$\begin{aligned} & 100 \\ & \mathrm{Fm} \end{aligned}$	$\begin{array}{\|c\|} \hline 101 \\ \mathrm{Md} \\ \hline \end{array}$	$\begin{array}{\|c} \hline 102 \\ \text { No } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 103 \\ \mathrm{Lr} \end{array}$

This image is in the public domain. Source: Wikimedia Commons.

The many-body problem

helium: $2 \mathrm{e}^{-}$ iron: $26 \mathrm{e}^{-}$

Image © Greg Robson on Wikimedia Commons. License: CC-BY-SA. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Dirac Quotes

Year 1929...

The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble.

P.A.M. Dirac, Proc. Roy. Soc. I23, 714 (1929)

...and in 1963

If there is no complete agreement [...] between the results of one's work and the experiment, one should not allow oneself to be too discouraged [...]
P.A.M. Dirac, Scientific American, May I963

The Multi-Electron Hamiltonian

$$
\begin{aligned}
& \text { potential energy of ions electron-electron interaction }
\end{aligned}
$$

Multi-Atom-Multi-Electron Schrödinger Equation
$H\left(\mathbf{R}_{1}, \ldots, \mathbf{R}_{N} ; \mathbf{r}_{1}, \ldots, \mathbf{r}_{n}\right) \Psi\left(\mathbf{R}_{1}, \ldots, \mathbf{R}_{N} ; \mathbf{r}_{1}, \ldots, \mathbf{r}_{n}\right)=E \Psi\left(\mathbf{R}_{1}, \ldots, \mathbf{R}_{N} ; \mathbf{r}_{1}, \ldots, \mathbf{r}_{n}\right)$

Born-Oppenheimer Approximation

 Sigmas From Shoulder to Shoulder [Science Tattoos]Source: Discover Magazine Online

Joe writes, "My tattoo is 3 lines of equations, the top is the Born Oppenheimer Approximation, the second line is the equation in the form of a 3-Dimensional Schroedinger Equation, and the solution in the form of a Schroedinger Equation. As a biochemist and molecular biophysicist I studied a lot of this stuff and I must say, Schroedinger was my favorite and well, I had to do it. The ink was done at Red Sky Studios in Tucson, AZ by artist Lisa."
© Discover Magazine Online. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Born-Oppenheimer Approximation (skinless version)

- mass of nuclei exceeds that of the electrons by a factor of 1000 or more
- we can neglect the kinetic energy of the nuclei
- treat the ion-ion interaction classically
- significantly simplifies the

Images in public domain.
Born
Oppenheimer
Hamiltonian for the electrons: This term is just an external potential $V\left(r_{r}\right)$

$$
H=-\frac{h^{2}}{2 m} \sum_{i=1}^{n} \nabla_{\mathbf{r}_{i}}^{2}-\sum_{i=1}^{N} \sum_{j=1}^{n} \frac{Z_{i} e^{2}}{\left|\mathbf{R}_{i}-\mathbf{r}_{j}\right|}+\frac{1}{2} \sum_{i=1}^{n} \sum_{\substack{j=1 \\ i \neq j}}^{n} \frac{e^{2}}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}
$$

Solutions

quantum chemistry

density

 functional theoryMoller-Plesset
perturbation theory MP2

> coupled cluster theory $\operatorname{CCSD}(\mathrm{T})$

Hartree Approach

Write wavefunction as a simple product of single particle states:

$$
\begin{gathered}
\Psi\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{n}\right)=\psi_{1}\left(\mathbf{r}_{1}\right) \psi_{2}\left(\mathbf{r}_{2}\right) \ldots \psi_{n}\left(\mathbf{r}_{n}\right) \\
\text { Hard } \quad \text { Product of Easy }
\end{gathered}
$$

Leads to an equation we can solve on a computer!

$$
\left\{-\frac{\mathrm{h}^{2}}{2 m} \nabla^{2}+V_{\mathrm{ext}}(\mathbf{r})+\sum_{\substack{j=1 \\ j \neq i}}^{n} \int d \mathbf{r} \frac{e^{2}\left|\psi_{j}(\mathbf{r})\right|^{2}}{\left|\mathbf{r}_{j}-\mathbf{r}\right|}\right\} \psi_{i}(\mathbf{r})=\varepsilon_{i} \psi_{i}(\mathbf{r})
$$

Hartree Approach
 $$
\left\{-\frac{\mathrm{h}^{2}}{2 m} \nabla^{2}+V_{\mathrm{ext}}(\mathbf{r})+\sum_{\substack{j=1 \\ j \neq i}}^{n} \int d \mathbf{r} \frac{e^{2}\left|\psi_{j}(\mathbf{r})\right|^{2}}{\left|\mathbf{r}_{j}-\mathbf{r}\right|}\right\} \psi_{i}(\mathbf{r})=\varepsilon_{i} \psi_{i}(\mathbf{r})
$$

The solution for each state depends on all the other states (through the Coulomb term).

- we don't know these solutions a priori
- must be solved iteratively:
- guess form for $\left\{\Psi_{i}{ }^{\text {in }}(\mathbf{r})\right\}$
- compute single particle Hamiltonians
- generate $\left\{\Psi_{i}{ }^{\text {out }}(\mathbf{r})\right\}$
- compare with old
- if different set $\left\{\Psi_{i}{ }^{\text {in }}(\mathbf{r})\right\}=\left\{\Psi_{i}{ }^{\text {out }}(\mathbf{r})\right\}$ and repeat
- if same, you are done
- obtain the self-consistent solution

Simple Picture...But...

Interacting

Non-Interacting

After all this work, there is still one major problem: the solution is fundamentally wrong

The fix brings us back to spin!

Symmetry Holds the Key

Speculation: everything we know with scientific certainty is somehow dictated by symmetry.

The relationship between symmetry and quantum mechanics is particularly striking.

Exchange Symmetry

- all electrons are indistinguishable
- electrons that made da Vinci, Newton, and Einstein who they were, are identical to those within our molecules a bit humbling...
- so if
- I show you a system containing electrons
- you look away
- I exchange two electrons in the system
- you resume looking at system
-there is no experiment that you can conduct that will indicate that I have switched the two electrons

Mathematically

- define the exchange operator:

$$
\chi_{12} \psi_{1}\left(r_{1}\right) \psi_{2}\left(r_{2}\right)=\psi_{1}\left(r_{2}\right) \psi_{2}\left(r_{1}\right)
$$

- exchange operator eigenvalues are $\pm \mathrm{I}$:

$$
\begin{aligned}
& \text { suppose } \hat{\chi}_{12} \phi=\chi \phi \\
& \hat{\chi}_{12} \hat{\chi}_{12} \phi=\chi^{2} \phi=\phi \\
& \chi^{2}=1, \text { or } \chi= \pm 1
\end{aligned}
$$

Empirically

- all quantum mechanical states are also eigenfunctions of exchange operators
- those with eigenvalue I (symmetric) are known as Bosons
- those with eigenvalue -I (antisymmetric) are known as Fermions
- profound implications for materials properties
- wavefunctions for our many electron problem must be anti-symmetric under exchange
- implies Pauli exclusion principle

Hartree-Fock

- Employing Hartree's approach, but
- enforcing the anti-symmetry condition
- accounting for spin
- Leads to a remarkable result:

$$
\left\{-\frac{h^{2}}{2 m} \nabla^{2}+V_{\mathrm{ext}}(\mathbf{r})+\sum_{\substack{j=1 \\ j \neq i}}^{n} \int \frac{\mathbf{r}^{2} \mid \psi_{j}(\mathbf{r})^{2}}{\left|\mathbf{r}_{j}-\mathbf{r}\right|}\right\} \psi_{i}(\mathbf{r})-\sum_{\substack{j=1 \\ j \neq i}}^{n} \delta_{s_{i}, j} \int d \mathbf{r}^{\prime} \frac{e^{2}}{\left|\mathbf{r}^{\prime}-\mathbf{r}\right|^{*}} \psi_{j}^{*}\left(\mathbf{r}^{\prime}\right) \psi_{i}(\mathbf{r}) \psi_{j}(\mathbf{r})=\varepsilon_{i} \psi_{i}(\mathbf{r})
$$

- Hartree-Fock theory is the foundation of molecular orbital theory.
- It is based upon a choice of wavefunction that guarantees antisymmetry between electrons.

But...Hartree-Fock

- neglects important contribution to electron energy (called "correlation" energy)
- difficult to deal with: integral operator makes solution complicated
- superceded by another approach: density functional theory

Solutions

Solving the Schrodinger Equation

No matter how you slice it, the wavefunction is a beast of an entity to have to deal with.

For example: consider that we have n electrons populating a 3D space.

Let's divide 3D space into $N \times N \times N=2 \times 2 \times 2$ grid points.
To reconstruct $\Psi(r)$, how many points must we keep track of?

Solving the Schrodinger Eq.

divide 3D space into $\mathrm{N} \times \mathrm{N} \times \mathrm{N}=2 \times 2 \times 2$ grid

 points© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

$$
\Psi=\Psi\left(r_{1}, \ldots, r_{n}\right) \quad \# \text { points }=N^{3 n}
$$

$\mathrm{n}=\#$ electrons	$\Psi\left(\mathrm{N}^{3 \mathrm{n}}\right)$
1	8
10	10^{9}
100	10^{90}
1,000	10^{900}

Working with the Density

The electron density seems to be a more manageable quantity.

Wouldn't it be nice if we could reformulate our problem in terms of the density, rather than the wavefunction?

Energy \longleftrightarrow Electron Density

$$
\mathrm{E}_{0}=\mathrm{E}\left[n_{0}\right]
$$

Walter Kohn (left), receiving the Nobel prize in chemistry

Why DFT?

computational expense for system size N :

Quantum Chemistry methods; MP2, CCSD(T)

$$
O\left(N^{5}-N^{7}\right)
$$

Density Functional Theory

$\mathrm{O}\left(\mathrm{N}^{3}\right) ; \mathrm{O}(\mathrm{N})$

Why DFT?

Image by MIT OpenCourseWare.

Density functional theory

$$
\psi=\psi\left(\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{N}\right) \quad \begin{gathered}
\text { wave function: } \\
\text { complicated! }
\end{gathered}
$$

Density functional theory

electron density n

Total energy is a functional of the electron density.

Density functional theory

$$
E[n]=\underset{\text { kinetic }}{T}[n]+\underset{\text { ion-ion }}{V_{i i}}+\underset{\text { ion-electron }}{V_{i e}[n]}+\underset{\text { electron-electron }}{V_{e e}[n]}
$$

electron density $n(\vec{r})=\sum_{i}\left|\phi_{i}(\vec{r})\right|^{2}$

$$
\boldsymbol{E}_{\text {ground state }}=\min _{\phi} \boldsymbol{E}[\boldsymbol{n}]
$$

Find the wave functions that minimize the energy using a functional derivative.

Density Functional Theory

Finding the minimum leads to Kohn-Sham equations

$$
\begin{gathered}
{\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V_{s}(\vec{r})\right] \phi_{i}(\vec{r})=\epsilon_{i} \phi_{i}(\vec{r})} \\
V_{s}=V+\int \frac{e^{2} n_{s}\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|} \mathrm{d}^{3} r^{\prime}+V_{\mathrm{XC}}\left[n_{s}(\vec{r})\right] \\
\text { ion potential } \quad \text { Hartree potential } \quad \text { exchange-correlation } \\
\text { potential }
\end{gathered}
$$

equations for non-interacting electrons

Density functional theory

$$
V_{s}=V+\int \frac{e^{2} n_{s}\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|} \mathrm{d}^{3} r^{\prime}+V_{\mathrm{xc}}\left[n_{s}(\vec{r})\right],
$$

Only one problem: v_{xc} not known! approximations necessary
local density approximation

LDA
general gradient approximation

GGA

Self-consistent cycle

Kohn-Sham equations

Modeling software

name	license	basis functions	pro/con
ABINIT	free	plane waves	very structured
ONETEP	pay	Wannier functions	linear scaling
Wien2k	pay	Y/m + plane waves	very accurate
VASP	pay	plane waves	fast
PWscf	free	plane waves	fast

Basis functions

Matrix eigenvalue equation:

$$
\begin{aligned}
H \psi & =E \psi \\
H \sum_{i} c_{i} \phi_{i} & =E \sum_{i} c_{i} \phi_{i} \\
\int d \vec{r} \phi_{j}^{*} H \sum_{i} c_{i} \phi_{i} & =E \int d \vec{r} \phi_{j}^{*} \sum_{i} c_{i} \phi_{i} \\
\sum_{i} H_{j i} c_{i} & =E c_{j} \\
\mathcal{H} \vec{c} & =E \vec{c}
\end{aligned}
$$

Plane waves as basis functions

plane wave expansion:

$$
\psi(\vec{r})=\sum_{j} c_{j} \underbrace{i \vec{G}_{j} \cdot \vec{r}}_{\text {plane wave }}
$$

Cutoff for a maximum G is necessary and results in a finite basis set.

Plane waves are periodic, thus the wave function is periodic!
periodic crystals:
Perfect!!! (next lecture)

atoms, molecules.
be careful!!!

Put molecule in a big box

DFT calculations

$$
\begin{aligned}
& \text { total energy }=-84.80957141 \mathrm{Ry} \\
& \text { tota energy }=-84.80938034 \mathrm{Ry} \\
& \text { total energy }=-84.81157880 \mathrm{Ry} \\
& \text { total energy = } \\
& \text { total energy }=-84.81312816 \mathrm{Ry} \\
& \text { total energy }=-84.81322862 \mathrm{Ry}
\end{aligned}
$$

exiting loop;
result precise enough

At the end we get:
I) electronic charge density
2) total energy

- structure
- bulk modulus
- shear modulus
- elastic constants
- vibrational properties
- stress

口 ...

- sound velocity

Convergence

PWscf input

- What atoms are involved?
- Where are the atoms sitting?
- How big is the unit cell?
- At what point do we cut the basis off?
- When to exit the scf loop?

All possible parameters are described in INPUT PW.

```
&control
/ pseudo_dir = ""
&system
    Ms,
    lol
/
&electrons
    conv_thr =1.0d-8
ATOMIC SPECIES
    O 1006944 hydrogen\UPF
ATOMICPPSITIONS {bohr}
    O 0.0
K_POINTS {gamma}
```


Review

- Review
- The Many-body Problem
- Hartree and Hartree-Fock
- Density Functional Theory
- Computational Approaches
- Modeling Software
- PWscf

Literature

- Richard M. Martin, Electronic Structure
- Kieron Burke, The ABC of DFT chem.ps.uci.edu/~kieron/dft/
- wikipedia,"many-body physics","density functional theory","pwscf", "pseudopotentials", ...

MIT OpenCourseWare
http://ocw.mit.edu
3.021 J / 1.021J / 10.333J / 18.361J / 22.00J Introduction to Modelling and Simulation Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

