Moving Towards Sustainable Materials Use:

Insights from Strategic use of Models

Prof. Randolph Kirchain

Materials Systems Laboratory Department of Materials Science & Engineering and Engineering Systems Division

Massachusetts Institute of Technology Department of Materials Science & Engineering Engineering Systems Division

Research Question How can we make More Sustainable Materials & Materials Processing **Decisions**?

Massachusetts Institute of Technology Department of Materials Science & Engineering Engineering Systems Division

Materials Systems Laboratory

What is Sustainable **Development?**

Massachusetts Institute of Technology Department of Materials Science & Engineering Engineering Systems Division

Materials Systems Laboratory

MSL

Classic Definition

"Sustainable development meets the needs of the present without compromising the ability of future generations to meet their own needs" (The World Commission on Environment and Development, United Nations, 1987)

Key Questions: What?

... to Sustain?

... to Develop?

Plii

Massachusetts Institute of Technology Department of Materials Science & Engineering Engineering Systems Division MSL Materials Systems Laboratory

What is to be Sustained?: Broadly Accepted Elements of Sustainability

- Economic
 - Human Capital
 - Human-made Capital
- Environment
 - Natural Capital
- Social
 - Social Capital

Adapted from http://www.state.nj.us/dep/dsr/sustainable-state/what-is.htm

Massachusetts Institute of Technology Department of Materials Science & Engineering Engineering Systems Division MSL Materials Systems Laboratory

Sustainability is an interesting concept, but ...

Why Do We Care?

Massachusetts Institute of Technology Department of Materials Science & Engineering Engineering Systems Division

Materials Systems Laboratory

M

How do design / technology decisions effect the environment?

Massachusetts Institute of Technology Department of Materials Science & Engineering Engineering Systems Division

Materials Systems Laboratory Slide 8

MSL

How do Technology Decisions Affect the Environment?

- Direct
 - Manufacturing burden
 - Consumption of energy
 - Emissions to the environment
 - Concentration in the environment
 - Most materials still eventually in up in landfills
 - Toxicity for some materials
 - Availability
- Indirect
 - Performance of the products which they create
 - Energy Efficiency
 - Recyclability

Why care about technology's impacts today?

(1) Societal Perspective a)Strain on the natural world

Massachusetts Institute of Technology Department of Materials Science & Engineering Engineering Systems Division

Observable Strain on the Natural World

Habitat Loss

Toxics Concentration

Clip art of global warming removed due to copyright restrictions.

Global Climate Change

Massachusetts Institute of Technology Department of Materials Science & Engineering Engineering Systems Division

Why care about technology's impacts today?

(1) Societal Perspectiveb) Materials Consumptionis massive & growing rapidly

Massachusetts Institute of Technology Department of Materials Science & Engineering Engineering Systems Division

Observable Strain on Natural World

Is this *really* a problem?

How much do YOU consume per day?

Massachusetts Institute of Technology Department of Materials Science & Engineering Engineering Systems Division

Materials Systems Laboratory

MS

How Much Do You Throw Out per Day? Municipal Solid Waste in the US

Observable Strain on Natural World

Is this *really* a problem?

How much do YOU consume per day?

Massachusetts Institute of Technology Department of Materials Science & Engineering Engineering Systems Division

Materials Systems Laboratory

MS

Consumption has Skyrocketed in the Past Century

Total Inflow > 80 kgs / person / day

Image removed due to copyright restrictions. Please see Fig. 26 in Ayres, Robert U., Leslie W. Ayres, and Benjamin Warr. "Is the U.S. Economy Dematerializing?" Chapter 3 in Janssen, Marco, and Jeroen C. J. M. van den Bergh. *Economics of Industrial Ecology*. Cambridge, MA: MIT Press, 2005. ISBN: 9780262220712.

Total Inflow Associated with US Economy: fuels, metals, construction, chemicals & biomass

Ayres, Ayres, & Moore, "Is the US Economy Dematerializing?" 2006

Massachusetts Institute of Technology Department of Materials Science & Engineering Engineering Systems Division

Its NOT just about US anymore!

How much does (will) Rest of World consume?

Massachusetts Institute of Technology Department of Materials Science & Engineering Engineering Systems Division Materials Systems Laboratory

Differences in Consumption: The Example of Automobiles

Engineering Systems Division

Differences in Consumption: The Example of Automobiles

Engineering Systems Division

Why care about technology's impacts today?

(2) Private/Firm Perspective The business climate is changing (aka Show me the Money!)

Massachusetts Institute of Technology Department of Materials Science & Engineering Engineering Systems Division

Brand Image Major firms have realized that highlighting environment / carbon is good for the bottom line

Please see:

Maestri, Nicole. "Wal-Mart Index to Rate Products' Environmental Impact." Reuters, July 15, 2009. Advertising for Timberland Earthkeepers and Apple MacBook Procter & Gamble Sustainability Report.

What used to be only niche differentiator will likely soon become a barrier to entry

Massachusetts Institute of Technology Department of Materials Science & Engineering Engineering Systems Division

Okay, so designers & technology decision-makers should care...

What do we do about it? Industrial Ecology: A Perspective & Strategy

Massachusetts Institute of Technology Department of Materials Science & Engineering Engineering Systems Division

How Can We Affect This?

- Human Behavior
 - Change patterns of consumption
 - Waste less
- Change the rules
 - Dematerialization

Irrespective of the strategy, method needed to evaluate performance

- Get the same function from less material
- Materials substitution
 - Apply less harmful materials
- Waste Mining Reuse, Recycle
 - Find ways to make use of streams currently wasted

Finding Sustainable Materials & Processes:

Product Footprint

Massachusetts Institute of Technology Department of Materials Science & Engineering Engineering Systems Division

Question: Which strategies should be pursued to improve sustainability?

- Engineers have identified many strategies that could improve sustainability
 - Implement more efficient process
 - Substitute materials in product
 - Select nearby supplier
 - Change package from PVC to cardboard
 - Redesign product
- Each costs money to implement
- Which would have the most impact?
 - Cannot just look it up. Let's try modeling...

What is an engineering model?

- 11 : a description or analogy used to help visualize something (as an atom) that cannot be directly observed
- 12 : a system of postulates, data, and inferences presented as a mathematical description of an entity or state of affairs

What is the purpose of creating such models?

Life Cycle Assessment: Basic Concept

- Quantify inflows and outflows
- Characterize how in & outflows "change the world"

Materials Systems Laboratory Slide 3

MS

Life Cycle Assessment: Basic Concept

Study Goal

• Study Goal:

Characterize the environmental life-cycle impact of common consumer product to

- understand the primary drivers of environmental impact and
- identify strategies to reduce environmental impact.
- Functional Unit: one product

Question: Which strategies should be pursued to improve sustainability?

- Engineers have identified many strategies that could improve sustainability
 - Implement more efficient process
 - Substitute materials in product
 - Select nearby supplier
 - Change package from PVC to cardboard
 - Redesign product
- Each costs money to implement
- Which would have the most impact?

MS

Materials Systems Laboratory Slide 33

System Boundary: Lifecycle

Massachusetts Institute of Technology Department of Materials Science & Engineering Engineering Systems Division

Impacts in Product Production Cumulative Energy Demand

Massachusetts Institute of Technology Department of Materials Science & Engineering Engineering Systems Division

Impacts in Product Production Cumulative Energy Demand

Massachusetts Institute of Technology Department of Materials Science & Engineering Engineering Systems Division

Impacts from Materials Production Cumulative Energy Demand

What else could be done?

Massachusetts Institute of Technology Department of Materials Science & Engineering Engineering Systems Division

Materials Systems Laboratory

MSL

Complete Life Cycle: One Use Cycle Use phase dominates

Clear Strategic Opportunities

- In supply-chain
 - Materials production Particularly, Materials A, B & C
 - Use a new supplier
 - Use recycled materials
 - Use a new material
- In house
 - Manufacturing facility
- Transport, packaging are smaller impacts for this product, but could be improved
- EOL is negligible
- Redesign to improve use phase would be revolutionary

Evaluating Sustainability: Issues to Consider for Solar Cells

- Economic
 - Costs to produce
 - Costs to use
 - Costs to dispose
- Environmental
 - Resource use
 - Effluents / Emissions
 - Supply-chain & Production
 - Use
 - Disposal
 - Avoided
 - End-of-life recovery

Materials Systems Laboratory Slide 44

MS

MIT OpenCourseWare http://ocw.mit.edu

3.003 Principles of Engineering Practice Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.