Lecture 24

Implications of Equilibrium and Gibbs-Duhem

Last Time
Drawing Curves Correctly
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Stability, Global Stability, Metastability, Instability
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Equilibrium States With More Than One Variable

For a system of fixed composition, $\delta U(S, V)$ can be expanded ${ }^{25}$

$$
\begin{align*}
\delta U= & \frac{\partial U}{\partial S} d S+\frac{\partial U}{\partial V} d V \\
& +\frac{1}{2}\left[\frac{\partial^{2} U}{\partial S^{2}}(d S)^{2}+2 \frac{\partial^{2} U}{\partial S \partial V} d S d V+\frac{\partial^{2} U}{\partial V^{2}}(d V)^{2}\right]+\ldots \tag{24-1}
\end{align*}
$$

For a local equilibrium

$$
\begin{equation*}
\frac{\partial U}{\partial S}=T_{\circ} \quad \text { and } \quad \frac{\partial U}{\partial V}=-P_{\circ} \tag{24-2}
\end{equation*}
$$

so that

$$
(d S, d V)\left(\begin{array}{cc}
\frac{\partial^{2} U}{\partial S^{2}} & \frac{\partial^{2} U}{\partial S V V} \tag{24-3}\\
\frac{\partial^{2} U}{\partial S \partial V} & \frac{\partial^{2} U}{\partial V^{2}}
\end{array}\right)\binom{d S}{d V}>0
$$

The matrix is called the Hessian of the system and for the inequality to be true it must be "positive definite" for a two-by-two matrix.

[^0]\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Necessary conditions for a local minimum are:
\[

$$
\begin{equation*}
\frac{\partial^{2} U}{\partial S^{2}}>0 \tag{24-4}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
\frac{\partial^{2} U}{\partial S^{2}} \frac{\partial^{2} U}{\partial V^{2}}-\left(\frac{\partial^{2} U}{\partial S \partial V}\right)^{2}>0 \tag{24-5}
\end{equation*}
$$

evaluated at the extrema.
\qquad
\qquad
\qquad
\qquad
Therefore:

$$
\begin{equation*}
\frac{\partial^{2} U}{\partial S^{2}}=\left(\frac{\partial T}{\partial S}\right)_{V}=\frac{T}{C_{V}}>0 \tag{24-6}
\end{equation*}
$$

$C_{V}>O$ for stability (If you add heat to a system, then its entropy must rise)
The second part (Eq. 24-5) that must also positive can be written in terms of the Jacobian

$$
\begin{equation*}
\frac{\partial\left(\left(\frac{\partial U}{\partial S}\right)_{V},\left(\frac{\partial U}{\partial V}\right)_{S}\right)}{\partial(S, V)}=\frac{\partial(T,-P)}{\partial(S, V)}>0 \tag{24-7}
\end{equation*}
$$

\qquad

$$
\begin{align*}
\left(\frac{\partial P}{\partial V}\right)_{T} \frac{T}{C_{V}} & <0 \tag{24-8}\\
\left(\frac{\partial P}{\partial V}\right)_{T} & <0
\end{align*}
$$

for a stable equilibrium.
\qquad
\qquad
\qquad

More Mathematical Thermodynamics: Homogeneous Functions

Consider $U\left(S, V, N_{i}\right)$, if I scale all the extensive variables by multiplying each of the extensive variables with the same "scale factor" λ then

$$
\begin{equation*}
U\left(\lambda S, \lambda V, \lambda N_{i}\right)=\lambda U\left(S, V, N_{i}\right) \tag{24-9}
\end{equation*}
$$

Functions that have the property of Equation 24-9, like U, are called "homogeneous degree one" (HD1) function of their variables.

Notice that G is not a completely homogeneous function:

$$
\begin{equation*}
G\left(\lambda T, \lambda P, \lambda N_{i}\right) \neq \lambda G\left(T, P, N_{i}\right) \tag{24-10}
\end{equation*}
$$

i.e., increasing the pressure is not like changing an extensive variable.

However,

$$
\begin{equation*}
G\left(T, P, \lambda N_{i}\right)=\lambda G\left(T, P, N_{i}\right) \tag{24-11}
\end{equation*}
$$

G is HD1 only in the N_{i}.
Notice that (here lies a common mistake!)

$$
\begin{equation*}
\bar{G}\left(T, P, \lambda X_{i}\right) \neq \lambda \bar{G}\left(T, P, X_{i}\right) \tag{24-12}
\end{equation*}
$$

\qquad
\qquad
\qquad
\qquad
\bar{G} is a different function than G.
Consider carefully, what can be deduced from Equation 24-11.
Taking the derivative with respect to λ

$$
\begin{equation*}
\sum_{i=1}^{C} \frac{\partial G}{\partial\left(\lambda N_{i}\right)} \frac{\partial\left(\lambda N_{i}\right)}{\partial \lambda}=G\left(T, P, N_{i}\right) \tag{24-13}
\end{equation*}
$$

We get the following very important equation:

$$
\begin{equation*}
\sum_{i=1}^{C} \mu_{i} N_{i}=G\left(T, P, N_{i}\right) \tag{24-14}
\end{equation*}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
This corresponds to what has been discussed about the relation of the Gibbs free energy. It corresponds to the internal degrees of freedom.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Gibbs-Duhem Relation

Consider

$$
\begin{equation*}
G=\sum_{i=1}^{C} \mu_{i} N_{i} \tag{24-15}
\end{equation*}
$$

and compare it to our previous expression for $d G$:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

It follows that (This is another important equation):

$$
\begin{equation*}
0=-S d T+V d P-\sum_{i=1}^{C} N_{i} d \mu_{i} \tag{24-16}
\end{equation*}
$$

This is the Gibbs-Duhem Equation. It will be used again and again.
\qquad
\qquad
\qquad
\qquad
\qquad

Notice that Equation 24-16 has the following form:

$$
\begin{equation*}
0=\vec{Y} \cdot d \vec{X} \tag{24-17}
\end{equation*}
$$

At equilibrium, a small virtual change in the system is normal to the size of the system.

[^0]: ${ }^{25}$ Assuming that $U(S, V)$ has continuous derivatives near the point (S, V) that it is being expanded around.

