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Lecture 24

Implications of Equilibrium and Gibbs-Duhem

Last Time

Drawing Curves Correctly

Stability, Global Stability, Metastability, Instability

Equilibrium States With More Than One Variable

For a system of fixed composition, δU(S, V ) can be expanded25
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∂U
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∂V
dV

+
1

2

[
∂2U

∂S2
(dS)2 + 2

∂2U

∂S∂V
dSdV +

∂2U

∂V 2
(dV )2

]
+ . . .

(24-1)

For a local equilibrium
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= −P◦ (24-2)

so that
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The matrix is called the Hessian of the system and for the inequality to be true it must be
“positive definite” for a two-by-two matrix.

25Assuming that U(S, V ) has continuous derivatives near the point (S, V ) that it is being expanded around.
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Necessary conditions for a local minimum are:

∂2U

∂S2
> 0 (24-4)

and
∂2U

∂S2

∂2U

∂V 2
−
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)2

> 0 (24-5)

evaluated at the extrema.

Therefore:
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∂S2
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)
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CV

> 0 (24-6)

CV > O for stability (If you add heat to a system, then its entropy must rise)
The second part (Eq. 24-5) that must also positive can be written in terms of the Jacobian
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for a stable equilibrium.

More Mathematical Thermodynamics: Homogeneous Functions

Consider U(S, V, Ni), if I scale all the extensive variables by multiplying each of the exten-
sive variables with the same “scale factor” λ then

U(λS, λV, λNi) = λU(S, V, Ni) (24-9)

Functions that have the property of Equation 24-9, like U , are called “homogeneous degree
one” (HD1) function of their variables.

Notice that G is not a completely homogeneous function:

G(λT, λP, λNi) 6= λG(T, P, Ni) (24-10)

i.e., increasing the pressure is not like changing an extensive variable.
However,

G(T, P, λNi) = λG(T, P,Ni) (24-11)

G is HD1 only in the Ni.
Notice that (here lies a common mistake!)

G(T, P, λXi) 6= λG(T, P,Xi) (24-12)

G is a different function than G.
Consider carefully, what can be deduced from Equation 24-11.
Taking the derivative with respect to λ
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C∑
i=1

∂G

∂(λNi)

∂(λNi)

∂λ
= G(T, P, Ni) (24-13)

We get the following very important equation:

C∑
i=1

µiNi = G(T, P,Ni) (24-14)

This corresponds to what has been discussed about the relation of the Gibbs free energy.
It corresponds to the internal degrees of freedom.

The Gibbs-Duhem Relation

Consider

G =
C∑

i=1

µiNi (24-15)

and compare it to our previous expression for dG:
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It follows that (This is another important equation):

0 = −SdT + V dP −
C∑

i=1

Nidµi (24-16)

This is the Gibbs-Duhem Equation. It will be used again and again.

Notice that Equation 24-16 has the following form:

0 = ~Y · d ~X (24-17)

At equilibrium, a small virtual change in the system is normal to the size of the system.


