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Lecture 11

Internal Energy and Enthalpy for Fluids

Last Time

Reversible, Quasistatic, and Quasiequilbrium Processes

Maximizing Work is Minimizing Power

Models for Gases

Internal Energy of an Ideal Gas

We will show that the internal energy of an ideal gas is a function of temperature only.
This makes physical sense because there is an assumption in ideal gas behavior that there is
no interaction between the molecules when we write PV = RT

Start with a reversible process for an ideal gas:

dU = dq + dw = dq − PdV (11-1)

Consider two processes: one occurring at constant volume, the other occurring at constant
pressure.
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Figure 11-1: Two consecutive processes, constant volume followed by constant pressure.

For process 1: dU = CV dT + 0; This can be integrated because T is the only thing that is
changing on the righthandside (CV is assumed to be independent of T and V ).

For process 2: dU = CP dT − PdV ; P is constant (i.e., not a function of T or V ) so it can
be integrated directly. Using the ideal gas law:

PV = nRT

PdV + V dP = nRdT

PdV = nRdT (constant pressure)

(11-2)

So for process 2,

dU = (CP − nR)dT (11-3)

Because we can make up any quasi-static curve with segments of dV processes and dP
processes
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Figure 11-2: Any curve can be made up of short segments in the limit.

Evidently, the sum of any such processes is a function only of T . Therefore, for an ideal
gas

U(T, n) or U(T ) (11-4)

Comparing the two equations:

dU = CV dT (11-5)

for the constant volume process, and

dU = (CP − nR)dT (11-6)

for the constant pressure process:

∫ final

initial
dU =

∫ Tf

Ti

CV dT and

∫ final

initial
dU =

∫ Tf

Ti

(CP − nR)dT (11-7)

∆U = Ufinal − Uinitial = CV (Tfinal − Tinitial) (11-8)
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∆U = (CP − nR)(Tfinal − Tinitial) (11-9)

CP − CV = nR (11-10)

or

CP − CV = R (11-11)

A New Thermodynamic State Function: Enthalpy
For an simple pure fluid, consider the physical meaning of the −PV term alone;

Question: What are the units of PV ? What are the units of P?

Imagine that there is a completely homogeneous system that has been arbitrarily divided
into small volumes of size dV :
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Figure 11-3: A uniformly homogeneous system (i.e. uniform pressure) of a simple pure
fluid divided into an arbitrary of smaller systems of size dV

Consider what is left of the internal energy after we subtract off the “mechanical” or
“compression” energy:

Total Internal Energy − Total Mechanical Energy∫
system dU − ∫

system(−P )dV

U + PV

(11-12)

The reason that the integration can be carried out is that both dV and dU are extensive
variables and are thus additive for each subsystem.

So that we can define a new state function (that is also extensive),

H = U + PV (11-13)

It is sensible to interpret H as the “thermal energy” at constant pressure. In other words,
we divide the internal energy for a simple fluid U into two parts—one part corresponding to
that stored as compressive energy (−PV ) and another part the thermal energy H. Another
way to see this is:

dH = dU + PdV + V dP

= dq − PdV + PdV + V dP

= dq + V dP

(11-14)

In other words

(
∂H

∂T

)

P=constant
=

dq

dT

∣∣∣∣
P=constant

≡ CP (11-15)
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for an ideal gas:

H − U = PV = nRT or
d(H − U)

dT
= R = CP − CV (11-16)

Another State Function

Recall that dq is not a perfect differential.
Let’s consider dq for an ideal gas undergoing a reversible process.

dqrev = dU + PdV (11-17)

for an ideal gas

dqrev = CV dT + PdV (11-18)

dqrev = CV dT +
nRT

V
dV (11-19)

Now divide through by T

dqrev

T
=

CV

T
dT +

nR

V
dV (11-20)

Notice that we have separated the equation into something that is integrable over segments
of dT and dV and thus over any curve.

Therefore, dqrev/T is a “perfect differential” and it must then be a state function for an
ideal gas.


