Logic I - Session 23

Completeness of PD

Soundness recap

- Last time we sketched a proof that PD is sound.
- I.e., if $\Gamma \vdash P$ in $P D$ then $\Gamma \vDash P$.
- The main part of the proof is proving that for any derivation:

$$
\text { If } \Gamma i=\text { Pi for all } i \leq k \text {, then } \Gamma k+1 \vDash P k+1 \text {. }
$$

- We prove this by showing that it holds for each rule that could justify line $\mathrm{k}+1$.

Soundness recap

- The strategy for the individual cases goes like this: - Given the rule justifying line $k+1$, try to draw conclusions about the form of $\mathrm{Pk}+1$.
- Then draw conclusions about the structure of the derivation above line $k+1$ and about the forms of sentences on earlier lines, e.g. Qi and Rj.
- Apply the inductive hypothesis to Qi and Rj.
- Note the relationships among $\Gamma \mathrm{i}, \Gamma \mathrm{j}$, and $\Gamma \mathrm{K}+1$.
- Draw conclusions about relationship between 「K+1 and Qi and Rj.
- Put this together with semantic definitions and

Completeness

- Next up: prove if $\Gamma \models P$ then $\Gamma \vdash P$ in PD
- Remember the main strategy for completeness of SD.
- We argued that for sets of SL sentences:
- Any C-SD set is a subset of a MC-SD set
- Every MC-SD set is TF-C
- Every subset of a TF-C set is TF-C.
- So any C-SD set is TF-C.
- We then appealed to connections between consistency and entailment and derivability.
- We'll have a similar strategy for PD.

Preliminary definitions

- MC-PD: Γ^{*} is Maximally Consistent in PD iff Γ^{*} is consistent in PD and $\Gamma^{*} \cup\{P\}$ is inconsistent for any P not already in Γ^{*}.
- $\exists C: \Gamma$ is Existentially Complete iff for each sent. in Γ of the form $(\exists x) P$, there's a substitution instance of $(\exists x) P$ in Γ, e.g. $P(a / x)$.
- ES sets: Set Γ_{e} is Evenly Subscripted iff it is the result of doubling the subscript of every i.c. in Γ.

$\Gamma \nLeftarrow \mathbf{P}$

Completeness

ES-variant of $\Gamma \cup\{\sim P\}$ is C-PD

ES-variant of $\Gamma \cup\{\sim P\} \subseteq$ a $M C-\exists C-P D$ set Γ^{*} (11.4.4)

If Γ^{*} is MC- $\exists C-P D$ then Γ^{*} is $Q-C$ (11.4.8)

$\Gamma \nRightarrow P$

$\Gamma \nLeftarrow P$

The ES-variant of $\Gamma \cup\{\sim P\}$ is $C-P D$

- Assume $\Gamma \nvdash P$.
- Then if $\Gamma \cup\{\sim P\}$ were IC-PD, then we could derive some Q and $\sim Q$ from $\Gamma \cup\{\sim P\}$.
- And in that case, from Γ we could derive P by $\sim E$, contradiction the assumption that $\Gamma \not \forall P$.
- So $\Gamma \cup\{\sim P\}$ is $C-P D$.
- Now we want to show that the ES variant of $\Gamma U\{\sim P\}$ is $C-P D$.
- So lets show that for any Γ, if Γ is $C-P D$, then Γe is $C-P D$.

$\Gamma \nLeftarrow \mathbf{P}$

The ES－variant of $\Gamma \cup\{\sim P\}$ is $C-P D$

－Suppose 「 is C－PD．Then 「e is the result of doubling the subscript on each individual constant in each sentence in Γ ．
－To show that Гe is C－PD：
－Suppose，for reductio，that Гe were IC－PD．
－Then we could derive some Q and $\sim Q$ from 「e．
－And then a certain Q^{*} and $\sim Q^{*}$ would be derivable from Γ ， contradicting our assumption that Γ is $C-P D$ ．
－Let＇s show how this reductio goes．

$\Gamma \nLeftarrow \mathbf{P}$

The ES-variant of $\Gamma \cup\{\sim P\}$ is $C-P D$

- Suppose, for reductio, that Гe is IC-PD.
- Then there's a derivation from members of Γe to Q and $\sim Q$.
- Halve the subscripts on each i.c. in the derivation, and you'll end up with premises that will all be members of Γ.
- The new sequence will be a derivation showing that 「 is IC-PD. - (There's a minor complication here that we'll skip...)
- This contradicts our assumption that 「 is C-PD.
- So Γ e is C-PD.
- So for any Γ, if Γ is $C-P D$, then Γ e is $C-P D$.
- So since $\Gamma \cup\{\sim P\}$ is $C-P D$, an ES-variant of it is C-PD.

$\Gamma \nLeftarrow \mathbf{P}$

Completeness

An ES-variant of $\Gamma \cup\{\sim P\}$ is $C-P D$

Any ES-variant of $\Gamma \cup\{\sim P\} \subseteq a M C-\exists C-P D$ set Γ^{*}

If $\quad \Gamma^{*}$ is $M C-\exists C-P D$ then Γ^{*} is $Q-C$ (11.4.8)

$\Gamma \nRightarrow \mathrm{P}$

$\Gamma \cup\{\sim P\}$ is $Q-C$
 $$
\Gamma \nRightarrow P
$$

- Suppose $\Gamma \cup\{-P\}$ is $Q-C$.
- Then there's an interpretation I^{\prime} that mem Γ and $\sim P$ true.
- Now suppose for reductio that $\Gamma \vDash P$.
- Then every I that mem Γ true makes P true.
- So I' would have to make P and ~P true, which is impossible given the def. of ~
- So $\Gamma \nRightarrow P$.
- So if $\Gamma \cup\{\sim P\}$ is $Q-C$, then $\Gamma \nRightarrow P$.

$\Gamma \nLeftarrow \mathbf{P}$

Completeness

An ES-variant of $\Gamma \cup\{\sim P\}$ is $C-P D$

Any ES-variant of $\Gamma \cup\{\sim P\} \subseteq a M C-\exists C-P D$ set Γ^{*}

If $\quad \Gamma^{*}$ is $M C-\exists C-P D$ then Γ^{*} is $Q-C$ (11.4.8)
$\Gamma \cup\{\sim P\} \subseteq a Q-C \operatorname{set} \Gamma^{*}$
$\Gamma \cup\{\sim P\}$ is $Q-C$

$\Gamma \cup\{\sim P\} \subseteq a Q-C$ set Γ^{*}

$\Gamma \cup\{\sim P\}$ is $Q-C$

- Suppose $\Gamma \cup\{\sim P\}$ is a subset of a $Q-C$ set Γ^{*}.
- This means every member of $\Gamma u\{\sim P\}$ is a member of Γ^{*}.
- Since Γ^{*} is $Q-C$, there's an interpretation I^{\prime} that mem Γ^{*} true.
- If every member of Γ^{*} is true on I^{\prime}, then since every member of $\Gamma \cup\{\sim P\}$ is a member of Γ^{*}, every member of $\Gamma \cup\{\sim P\}$ is true on I^{\prime}.
- So every member of $\Gamma \cup\{\sim P\}$ is true on I^{\prime}.
- So there's an interpretation that mem 「U\{~P\} true.
- So by def., $\Gamma \cup\{\sim P\}$ is Q-C.

$\Gamma \nLeftarrow \mathbf{P}$

Completeness

An ES-variant of $\Gamma \cup\{\sim P\}$ is $C-P D$

Any ES-variant of $\Gamma \cup\{\sim P\} \subseteq a M C-\exists C-P D$ set Γ^{*}

If $\quad \Gamma^{*}$ is $M C-\exists C-P D$ then Γ^{*} is $Q-C$ (11.4.8)

$$
\begin{gathered}
\Gamma \cup\{\sim P\} \subseteq a Q-C \text { set } \\
\downarrow \\
\Gamma \cup\{\sim P\} \text { is } Q-C \\
\downarrow \\
\Gamma \neq P
\end{gathered}
$$

$$
\begin{gathered}
\Gamma^{*} \text { is } Q-C \quad(11.4 .8) \\
\Gamma \cup\{\sim P\} \subseteq a Q-C \text { set } \Gamma^{*}
\end{gathered}
$$

- We know that the ES-variant of $\Gamma \cup\{\sim P\}$ is a subset of a $Q-C$ set, since the ES-variant is $\subseteq \Gamma^{*}$ and Γ^{*} is $Q-C$.
- We'll show that for any Γ, if the ES-variant Γ e is $Q-C, \Gamma$ is $Q-C$.
- Since Гe is Q-C, some interpretation Ie mem Гe true.
- Let I be just like Ie except that where Ie assigns objects to constants with even subscripts, I assigns the same objects to corresponding constants with their subscripts halved.
- E.g., if $\operatorname{Ie}(a 2)=J o h n, ~ I e(a 86)=B i l l, I e(c 12)=F r a n c e$, $I(a 1)=$ John, $I(a 43)=$ Bill, $I(c 6)=$ France
- Then each subscript difference $b /+\Gamma e$ and Γ is compensated for by a subscript difference between Ie and I.
- So I says the same things about the same objects as Ie.

$\Gamma \nLeftarrow \mathbf{P}$

Completeness

An ES-variant of $\Gamma \cup\{\sim P\}$ is $C-P D$

Any ES-variant of $\Gamma \cup\{\sim P\} \subseteq a M C-\exists C-P D$ set Γ^{*}

If Γ^{*} is MC- $\exists C-P D$ then Γ^{*} is $Q-C$ (11.4.8)

An ES-variant of $\Gamma \cup\{\sim P\}$ is $C-P D$

Any ES-variant of $\Gamma \cup\{\sim P\} \subseteq$ a MC- $\exists C-P D$ set Γ^{*}

- To prove: For any ES set Γe, there's an MC- $\exists C-P D$ set Γ^{*} such that $\Gamma e \subseteq \Gamma^{*}$.
- So suppose Гe is ES and C-PD.
- We'll set out a procedure for building a big set around Γe, and then prove that the resulting set is MC- $\exists C-P D$.
- As in our completeness proof of SD, the procedure will involve rules for constructing a series of sets $\lceil 2, ~ Г 3$, etc.
- $\Gamma 1$ will be Γ. And Γ^{*} will be the union of all sets in the Γ-series.

An ES-variant of $\Gamma \cup\{\sim P\}$ is C-PD

Any ES-variant of $\Gamma \cup\{\sim P\} \subseteq a M C-\exists C-P D$ set Γ^{*}

- To build our sets, we use an enumeration of all PL sentences.
- The rules for building sets are three:
- If $\Gamma i \cup\{P i\}$ is IC-PD:
- $\Gamma i+1$ is the same as $\Gamma \mathrm{i}$.
- If $\Gamma i \cup\{P i\}$ is C-PD, and Pi is NOT of the form $(\exists x) Q$:
- $\Gamma i+1$ is $\Gamma i \cup\{P i\}$
- If $\Gamma i \cup\{P i\}$ is C-PD, and Pi is of the form $(\exists x) Q$:
- $\Gamma i+1$ is $\Gamma i \cup\{P i, Q(a / x)\}$, where a is the alphabetically earliest constant not occurring in Pi or any member of $\mathrm{\Gamma i}$

An ES-variant of $\Gamma \cup\{\sim P\}$ is $C-P D$

Any ES-variant of $\Gamma \cup\{\sim P\} \subseteq$ a MC- $\exists C-P D$ set Γ^{*}

- E.g., suppose $\Gamma n=\{A a, B b,(\forall x) \sim F x\}$
- And suppose in our enumeration, we have:

$$
\begin{aligned}
& P n=(\exists x) F x, \\
& P n+1=H b \& G b, \\
& P n+2=(\exists x) \sim F x
\end{aligned}
$$

- Then $\Gamma n+1=\Gamma n=\{A a, B b,(\forall x) \sim F x\}$
- And $\Gamma n+2=\{A a, B b,(\forall x) \sim F x, H b \& G b\}$
- And $\Gamma n+3=\{A a, B b,(\forall x) \sim F x, H b \& G b,(\exists x) \sim F x, \sim F c\}$

An ES-variant of $\Gamma \cup\{\sim P\}$ is $C-P D$

Any ES-variant of $\Gamma \cup\{\sim P\} \subseteq$ a MC- $\exists C-P D$ set Γ^{*}

- We can now prove that Γ^{*}, the union of all sets in this sequence, is Maximally Consistent in PD and Existentially Complete.
- First, we'll show that Γ^{*} is C-PD.
- If it were IC-PD, a finite subset would be IC-PD, since every derivation is finite.
- Every finite subset of Γ^{*} is a subset of 「n for some n. (?)- And every 「n is C-PD. This we can prove by mathematical induction.

An ES-variant of $\Gamma \cup\{\sim P\}$ is C-PD

Any ES-variant of $\Gamma \cup\{\sim P\} \subseteq$ a $M C-\exists C-P D$ set Γ^{*}

- Basis clause: Г1 is C-PD by hypothesis.
- Inductive step: Suppose Гk is C-PD.
- There are three possibilities for $\Gamma k+1$.
- (1) $\Gamma k+1$ is Γk, in which case it's C-PD.
- (2) $\Gamma k+1$ is $\lceil k \cup\{P i\}$. Rule 2 requires it to be C-PD.
- (3) $\Gamma k+1$ is $\Gamma k \cup\{P i, Q(a / x)\}$. Rule 3 requires $\Gamma k \cup\{P i\}$ to be C-PD, where Pi is of the form $(\exists x)$ Q.
- But how do we know we can add $\mathrm{Q}(a / \mathrm{x})$ to $\Gamma \mathrm{K} \cup\{\mathrm{P} i\}$?

An ES-variant of $\Gamma \cup\{\sim P\}$ is C-PD

Any ES-variant of $\Gamma \cup\{\sim P\} \subseteq a M C-\exists C-P D$ set Γ^{*}

- By assumption, Pi is of the form $(\exists x) Q$ and $\Gamma k \cup\{(\exists x) Q\}$ is C-PD.
- Assume $\Gamma k \cup\{(\exists x) Q, Q(a / x)\}$ is IC-PD.
- That means from $\lceil k \cup\{(\exists x) Q, Q(a / x)\}$ we can derive R and $\sim R$.
- But that means given $\Gamma k \cup\{(\exists x) Q\}$ we can form a sub-derivation from assumption $Q(a / x)$ to anything we want.
- In particular, from $Q(a / x)$ to $\sim(\exists x) Q$!
- And then we can use $\exists E$ to get $\sim(\exists x) Q$ on the main scope line!
- How do we know that's permitted?
- We already have $(\exists x) Q$, so we have derived a contradiction.

An ES-variant of $\Gamma \cup\{\sim P\}$ is $C-P D$

Any ES-variant of $\Gamma \cup\{\sim P\} \subseteq$ a $M C-\exists C-P D$ set Γ^{*}

- So we've proven our inductive step. Now we have:
- Basis clause: Г1 is C-PD by hypothesis.
- Inductive step: If Γk is C-PD, then on any of the three ways $\Gamma k+1$ could be formed, $\Gamma k+1$ C-PD.
- Conclusion: For every n, Гn is C-PD.

An ES-variant of $\Gamma \cup\{\sim P\}$ is $C-P D$

Any ES-variant of $\Gamma \cup\{\sim P\} \subseteq a M C-\exists C-P D$ set Γ^{*}

- Now return to our proof that Γ^{*} is C-PD.
- We said if Γ^{*} were IC-PD, a finite subset would be IC-PD, since every derivation is finite.
- And every finite subset of Γ^{*} is a subset of Гn for some n.
- Now, since we just showed that every Гn is C-PD, we know that any subset of any 「 n is C-PD.
- So, since every finite subset of Γ^{*} is a subset of some Γn, we know that any finite subset of Γ^{*} is C-PD.
- So there's no derivation of any R and $\sim R$ from Γ^{*}, since that would have to be from a finite subset that was IC-PD.
- So Γ^{*} is C-PD.

An ES-variant of $\Gamma \cup\{\sim P\}$ is C-PD

Any ES-variant of $\Gamma \cup\{\sim P\} \subseteq$ a MC- $\exists C-P D$ set Γ^{*}

- Now we need to show that Γ^{*} is maximal.
- Suppose the contrary: There's a $P k \notin \Gamma^{*}$ s.t. $\Gamma^{*} \cup\{P k\}$ is C-PD.
- Since PK is a PL sentence, it occurs k th in our enumeration.
- By the def. of our Γ-sequence, $\Gamma k+1=\lceil k \cup\{P k\}$ if that's C-PD.
- 「k $\cup\{P k\}$ is C-PD.
- Since if $\{$ Pk\} were inconsistent with Γk, it would be inconsistent with every superset of 「k, e.g. Γ^{*}.
- So $\lceil k+1=\lceil k \cup\{P k\}$ (...perhaps with a substitution instance)
- But that means $P k \in \Gamma k+1$, so because $\Gamma k+1 \subseteq \Gamma^{*}, P k \in \Gamma^{*}$.
- Contradiction.
- So there's no $\operatorname{Pk} \notin \Gamma^{*}$ s.t. $\Gamma^{*} \cup\{P k\}$ is C-PD. I.e. Γ^{*} is maximal.

An ES-variant of $\Gamma \cup\{\sim P\}$ is C-PD

Any ES-variant of $\Gamma \cup\{\sim P\} \subseteq a M C-\exists C-P D$ set Γ^{*}

- Finally, let's show that Γ^{*} is existentially complete.
- I.e., that for each sentence in Γ^{*} of the form $(\exists x) Q$, there's a substitution instance of $(\exists x) Q$ in Γ^{*}.
- So suppose $(\exists x) Q$ is in Γ^{*}.
- (ヨx)Q is in our enumeration, at some position k.
- $\lceil k \cup\{P k\}$, i.e. $\lceil k \cup\{(\exists x) Q\}$, is either $C-P D$ or IC-PD.
- If it were IC-PD, then since $(\exists x) Q$ is in Γ^{*}, Γ^{*} would be ICPD.
- So $\Gamma k \cup\{(\exists x) Q\}$ is $C-P D$.

$\Gamma \nLeftarrow \mathbf{P}$

Completeness

An ES-variant of $\Gamma \cup\{\sim P\}$ is $C-P D$

Any ES-variant of $\Gamma \cup\{\sim P\} \subseteq a M C-\exists C-P D$ set Γ^{*}

If Γ^{*} is MC- $\exists C-P D$ then Γ^{*} is $Q-C$ (11.4.8)

MIT OpenCourseWare
http://ocw.mit.edu

24.241 Logic I

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

