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MOO 2 Lecture Outline

• Direct Pareto Front (PF) Calculation
• Normal Boundary Intersection (NBI)
• Adaptive Weighted Sum (AWS)

• Multiobjective Heuristic Programming

• Utility Function Optimization

• n-KKT

• Applications
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Direct Pareto Front Calculation

SOO: find x*

MOO: find PF

PF
J1

J2

PF
J1

J2

bad good

- It must have the ability to capture all Pareto points
- Scaling mismatch between objective manageable
- An even distribution of the input parameters (weights)  
should result in an even distribution of solutions

A good method is 
Normal-Boundary-Intersection (NBI)
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Normal Boundary Intersection (1)

J1

J2

J1

J2

J1

J2

• Carry out single objective optimization:
• Find utopia point: 
• U – Utopia Line between anchor points, NU – normal to Utopia 

line
• Move NU from     to     in even increments
• Carry out a series of optimizations 
• Find Pareto point for each NU setting

*

1J *

2J

*   1,2,...,i iJ J i zi*
x

Goal: Generate Pareto points that are well-distributed

*

1J
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2J

*

1J
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Normal Boundary Intersection (2)

• Yields remarkably even distribution of Pareto points
• Applies for z>2, U-line becomes a Utopia-

hyperplane.
• If boundary is sufficiently concave then the points 

found may not be Pareto Optimal. A Pareto filtering 
will be required.    

Reference: Das I. and Dennis J, “Normal-Boundary Intersection:

A New Method for Generating Pareto Optimal Points in 

Multicriteria Optimization Problems”, SIAM Journal on 

Optimization, Vol. 8, No.3, 

1998, pp. 631-657
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Adaptive Weighted Sum Method for 
Bi-objective Optimization

References: 

Kim I.Y. and de Weck O.L., “Adaptive weighted-sum method for bi-objective 
optimization: Pareto front generation”, Structural and Multidisciplinary 

Optimization, 29 (2), 149-158, February 2005

Kim I.Y. and de Weck, O., “Adaptive weighted sum method for multi-
objective optimization: a new method for Pareto front generation”, Structural 

and Multidisciplinary Optimization, 31 (2), 105-116, February 2006
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AWS MOO - Motivation

Drawbacks of Weighted Sum Method

(1) An even distribution of the weights among objective functions does not 
always result in an even distribution of solutions on the Pareto front. 

In real applications, solutions quite often appear only in some parts of the 
Pareto front, while no solutions are obtained in other parts. 

(2) The weighted sum approach cannot find solutions on non-convex parts of 
the Pareto front although they are non-dominated optimum solutions 
(Pareto optimal solutions). This is due to the fact that the weighted sum 
method is often implemented as a convex combination of objectives. 
Increasing the number of weights by reducing step size does not solve this 
problem. 
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Adaptive weighted sum approach

Weighted sum 

approach

J1 J1

Feasible 

region

J2

1

1

2

2

Feasible region

J2 1st region for 

more refinement

2nd region for 

more refinement

J2

J1

J1

J2

True Pareto front

Utopia point

Overall Procedure
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Convex Region with Non-Constant Curvature

J1

J2

2P

1P

J1

J2

2P

1P
1

2

Usual weighted sum method produces non-uniformly distributed 
solutions. 

AWS focuses more on unexplored regions.



10 © Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox
Engineering Systems Division and Dept. of Aeronautics and Astronautics

Non-convex Region: Non-Dominated Solutions

J1

J2

2P

1P

J1

J2

2P

1P

1

2

Usual weighted sum method cannot find Pareto optimal solutions 
in non-convex regions.

AWS determines Pareto optimal solutions in non-convex regions.
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J1

J2

2P

1P

Non-Convex Region: Dominated Solutions

J1

J2

2P

1P
1

2

AWS neglects dominated solutions in non-convex regions.

NBI erroneously determines dominated solutions as Pareto optimal 
solutions, so a Pareto filter is needed.
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Procedure (1)

[Step 1] Normalize the objective functions in the objective space

*i
x : Optimal solution vector for the single objective optimization

.
U

i i
i N U

i i

J J
J

J J

: Utopia point1* 2*

1 2
[ ( ), ( )]U J JJ x x

1 2
[ , ]N N NJ JJ

1* 2*where max[ ( ) ( )]N

i i i
J J Jx x : Nadir point

[Step 2] Perform multiobjective optimization using the usual weighted sum approach 

: Uniform step size of the weighting factor 
initial

1

n
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Procedures (2)

[Step 3] Delete nearly overlapping solutions on the Pareto front. 

for the th segmenti

i

avg

l
n round C i

l

[Step 4] Determine the number of further refinements in each of the regions. 

The longer the segment is, relative to the average length of all segments, the more it 
needs to be refined. The refinement is determined based on the relative length of the 
segment:

[Step 5] If ni is less than or equal to one, no further refinement is conducted in

the segment. For other segments whose number of further refinements

is greater than one, go to the following step.
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Procedures (3) 

[Step 6] Determine the offset distances from the two end points of each segment

2 2

1 1 2

1 1

1 2

tan
P P

P P

First, a piecewise linearized secant line is made by connecting the end points, 

J1

J2

1

2

1P

2P

J

J1

J2

2P

1PTrue Pareto front 

(unknown)

Piecewise linearized 

Pareto front

Feasible region

J1

J2

1P

2P

Newly obtained 

solutions

1 2
cos , sin

J J
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Procedures (4)

[Step 7] Impose additional inequality constraints and conduct suboptimization 

with the weighted sum method in each of the feasible regions. 

1 2

1 1 1

2 2 2

min ( ) (1 ) ( )

s.t. ( )

( )

( ) 0

( ) 0

[0,1]

x

y

J x J x

J x P

J x P

h x

g x

1
i

i
n

The uniform step size of the weighting 
factor for each feasible region is determined 
by the number of refinements (Step 4):

[Step 8] Convergence Check

Compute the length of the segments between all the neighboring solutions. 
If all segment lengths are less than a prescribed maximum length, terminate the
optimization procedure. If there are segments whose lengths are greater than the
maximum length, go to Step 4.
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2 2 2 2 2
1 1 2 3 4 5

33
2 1 2 4 5

1 2 3 4 5

2
1 2 3 4 5

2 2 2 2 2
1 2 3 4 5

minimize  
3 2 0.01( )

3

subject to   2 0.5 2,

4 2 0.8 0.6 0.5 0,

10

J x x x x x

x
J x x x x

x x x x x

x x x x x

x x x x x

Example 1: Convex Pareto front

Das, I., and Dennis, J. E., “Normal-Boundary Intersection: A New Method for Generating 
Pareto Optimal Points in Multicriteria Optimization Problems,” SIAM Journal on 

Optimization, Vol. 8, No. 3, 1998, pp. 631-657.
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Weighted Sum method

NBI method

AWS (Adaptive weighted Sum) method)

WS NBI AWS

No. of solutions 17 17 17

CPU time (sec) 1.71 2.43 3.83

Length variance (×10-

4) 266 0.23 2.3

Example 1: (Convex Pareto front) - Results

0.1
J
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Objective space (J1, J2)

2 2 2 2
1 2 1 2

2 2
1 2

1

2
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maximize
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3
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x x x x
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x
J x e x x e

e

x i

Example 2: Non-convex Pareto front

Weighted Sum method
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non-Pareto 

solution

suboptimum

non-Pareto 

solution

non-Pareto 

solution

non-Pareto 

solution

suboptimum

Case 1 Case 2

Case 3 Case 4

1 2
2.0x x

1 2
1.5x x

1 2
1.0x x

1 2
0.5x x

Initial starting 

point trials

Initial starting 

point trials

Initial starting 

point trials

Initial starting 

point trials

Example 2: Non-convex Pareto front - NBI

NBI NBI

NBINBI



20 © Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox
Engineering Systems Division and Dept. of Aeronautics and Astronautics

-10 -5 0 5 10
-10

-5

0

5

10

J
1

J 2

-10 -5 0 5 10
-10

-5

0

5

10

J
1

J 2

-10 -5 0 5 10
-10

-5

0

5

10

J
1

J 2

-10 -5 0 5 10
-10

-5

0

5

10

J
1

J 2
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Example 2: Non-convex Pareto front

0.1
J
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WS NBI AWS

Initial starting point case Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4

No. of solutions 15 15 15 15 15 15 15 15 15

CPU time (sec) 0.4 17.8 24.5 52.9 165.6 28.1 44.0 87.6 289.2

Length variance (×10-4) 632 11 3.6 8.8 3.6 4.3 4.3 4.3 4.3

No. of suboptimum solutions 0 2 0 1 0 0 0 0 0

No. of non-Pareto solutions 0 1 1 1 1 0 0 0 0

Example 2: Non-convex Pareto front
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L

L 3L

F

F

1

2

1A
2A 3A

P

Design variables: , 1,2,3iA i

: displancement of the point  in the th directioni P i

upper limit lower limit

2 2

upper limit lower limit

20 , 100 , 200

200 , 200

2 , 0.1

F kN L cm E GPa

MPa MPa

A cm A cm

Example 3: Static Truss Problem

Koski, J., “Defectiveness of weighting method in multicriterion optimization of structures,” Communications in 

Applied Numerical Methods, Vol. 1, 1985, pp. 333-337
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Non-Pareto 
optimal region

AWS

Example 3: Static Truss Problem
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0.2
J

0.1
J 0.05

J

Solutions for different offset distances

Example 3: Static Truss Problem
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L
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L

L

2

1
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mimimize
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subject to  , 1,2

i

i

i

Volume A

A

A A A i

Example 4: Dynamic Truss Problem

Koski, J., “Defectiveness of weighting method in multicriterion optimization of structures,” Communications in 

Applied Numerical Methods, Vol. 1, 1985, pp. 333-337
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Example 4: Dynamic Truss Problem

AWS
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0.3J 0.2J

0.1J
0.05J

Example 4: Dynamic Truss Problem

Solutions for different offset distances
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Conclusions

The adaptive weighted sum method effectively approximates the 
Pareto front by gradually increasing the number of solutions on the 
front. 

(1) AWS produces well-distributed solutions. 
(2) AWS finds Pareto solutions on non-convex regions. 
(3) AWS automatically neglects non-Pareto optimal solutions. 
(4) AWS is potentially more robust in finding optimal solutions than 

other methods where equality constraints are applied. 

AWS has been extended to multiple objectives (z>2), however, 
needed to introduce equality constraints for z>2.
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Multiobjective Heuristics

• Pareto ranking scheme
• Allows ranking of population 

without assigning preferences
or weights to individual 
objectives

• Successive ranking and 
removal scheme

• Deciding on fitness of 
dominated solutions is more 
difficult.Pareto ranking for

a minimization problem.

Pareto Fitness - Ranking Recall: Multiobjective GA
This number comes
from the D-matrix
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Example Multiobjective GA
2

1 1

1

1
,..., 1 exp

n

n i

i

f x x x
n

Minimization

Objective 1

Objective 2

2

1 1

1

1
,..., 1 exp

n

n i

i

f x x x
n

No mating

restrictions
With mating

restrictions
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Double Peaks Example: MO-GA
Multiobjective Genetic Algorithm (MOGA)

Generation 1 Generation 10

Caution: MOGA
can miss portions
of the PF even with
well distributed
Initial population
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Utility Function Approach
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Utility Function Approach

Ji

Ui

Ji

Ui Ui

Ji

Ui

JiMonotonic

increasing

decreasing

Strictly

Concave

Convex

Concave

Convex Non-monotonic

H. Cook:
Smaller-is-better (SIB)

Larger-is-better (LIB)

Nominal-is

-better (NIB)

Range

-is-better (RIB)
-

A. Messac (Physical Programming):

Class 1S
Class 2S

Class 3S Class 4S
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Aggregated Utility
The total utility becomes the weighted sum of partial utilities:

Attribute Ji

customer 1

customer 2

customer 3

Caution: “Utility” is a surrogate 

for “value”, but while “value” 

has units of [$], utility is unitless.interviews

Combine single utilities
into overall utility function:

Steps: MAUA
1. Identify Critical Objectives/Attrib.
2. Develop Interview Questionnaire
3. Administer Questionnaire
4. Develop Agg. Utility Function
5. Analyze Results

(performance i)

Ui(Ji)

ki’s determined during interviews

K is dependent scaling factor

… sometimes called multi-attribute utility analysis (MAUA)

1.0

E.g. two utilities combined: 1 2 1 2 1 2 1 1 2 2, ( ) ( ) ( ) ( )U J J Kk k U J U J k U J k U J

For 2 objectives: 1 2 1 2(1 ) /K k k k k
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Notes about Utility Maximization

• Utility maximization is very common well accepted in 
some communities of practice

• Usually U is a non-linear combination of objectives J
• Physical meaning of aggregate objective is lost (no units)
• Need to obtain a mathematical representation for U(Ji) for 

all I to include all components of utility
• Utility function can vary drastically depending on decision 

maker …e.g. in U.S. Govt change every 3-4 years
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n-KKT

constrained case

These are the KKT conditions with n objectives
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Four Basic Tensions (Trade-offs) in

Product/System Development

Performance

Schedule Risk

Cost

One of the main jobs of the system designer (together with the 
system architect) is to identify the principle tensions and resolve 
them

Ref: Maier and Rechtin,
“The Art of Systems Architecting”, 2000
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MO in iSIGHT

Traditional 
iSIGHT is set 
up to do 
weighted-sum 
optimization

Note: Weights 
and Scale 
Factors in
Parameters 
Table

Newer versions
Have MOGA 
capability.

Screenshot of weighted sum optimization in iSIGHT software 
(Engineous) removed due to copyright restrictions.
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Multiobjective Optimization Game

Task: Find an optimal layout for a new city, which comprises 5x5 sqm and 
50’000 inhabitants that will satisfy multiple disparate stakeholders.

5 miles

5 m
iles

Stakeholder groups:

a) Local Greenpeace Chapter
b) Chamber of Commerce
c) City Council (Government)
d) Resident’s Association

e) State Highway Commission

What layout should
be chosen ?

A

B
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Decision Space (I)

1

2

Commercial Zone   (shops, restaurants, industry)

Each 1x1 sqm square can be on of four zones:

Recreational Zone  (parks, lakes, forest)

3 Residential Zone  (private homes, apartments)

0 Vacant Zone

All zones (except vacant)
must be connected to each
other via one of the 
following roads

Highway (2 min/mile)

Avenue (4 min/mile)

Street  (6 min/mile)

0

1

2

3

Back Road (10 min/mile)
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Decision Space (II)

The zoning is captured via
the Z-matrix

2  1  2  2  0
3  2  0  1  2
3  3  2  1  2
3  1  1  1  2
2  0  1  1  2

Z=

The roads are captured
via the “NEWS” R-matrix

R=

Zone N  E  W  S

1
2
…

25

1   3   3   2
1   3   3   1
…………..

1   3   3   0

e.g. Zone 1

N

S

EW
Both matrices Z and R
uniquely define a city !
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Objective Space

Objective Vector

Tc: daily average commuting time [min]
Rt: yearly city tax revenue [$/year]
Ci: initial infrastructure investment [$]
Dr: residential housing density       [persons/sqm]
Qa: average residential air pollution [ppm]

Weights Vector  

Sum of weights must be 1000

E.g. want to weigh short commute the highest

1 2 3 4 5 500 125 125 100 150
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Constraints

Fixed: City Population: 16,000
Hwy Connectors: 1W, 25E 

Constraints:

(1) minimum 1 residential zone

(2) Hwy - must be connected somehow from
upper left zone (1,1) to lower right zone (5,5)
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Lecture Summary

• Two fundamental approaches to MOO
– Scalarization of multiple objectives to a single combined 

objective (e.g. utility approach)
– Pareto Approach with a-posteriori selection of solutions

• Methods for computing Pareto Front
– Weighted Sum Approach 
– Design Space Exploration + Pareto Filter
– Normal Boundary Intersection (NBI)
– Adaptive Weighted Sum (AWS)
– Multiobjective Heuristic Algorithms (e.g. MOGA)

• Resolving tradeoffs is essential in system design
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