

1

Multidisciplinary System Design Optimization (MSDO)

Multiobjective Optimization (II) Lecture 15

Dr. Anas Alfaris

MOO 2 Lecture Outline

- Direct Pareto Front (PF) Calculation
 - Normal Boundary Intersection (NBI)
 - Adaptive Weighted Sum (AWS)
- Multiobjective Heuristic Programming
- Utility Function Optimization
- n-KKT
- Applications

Mest Direct Pareto Front Calculation

SOO: find **x*** MOO: find PF

- It must have the ability to capture all Pareto points
- Scaling mismatch between objective manageable
- An even distribution of the input parameters (weights) should result in an even distribution of solutions

A good method is Normal-Boundary-Intersection (NBI)

Mesd Normal Boundary Intersection (1)

Goal: Generate Pareto points that are well-distributed

- Carry out single objective optimization: $J_i^* = J_i \mathbf{x}^{i^*} \quad \forall i = 1, 2, ..., z$ Find utopia point: $\mathbf{J}^{\mathbf{u}} = \begin{bmatrix} J_1 & \mathbf{x}^{1^*} & J_2 & \mathbf{x}^{2^*} & \cdots & J_z & \mathbf{x}^{z^*} \end{bmatrix}^T$
- U Utopia Line between anchor points, NU normal to Utopia line
- Move NU from \overline{J}_1^* to \overline{J}_2^* in even increments
- Carry out a series of optimizations
- Find Pareto point for each NU setting

Mest Normal Boundary Intersection (2)

- Yields remarkably even distribution of Pareto points
- Applies for z>2, U-line becomes a Utopiahyperplane.
- If boundary is sufficiently concave then the points found may not be Pareto Optimal. A Pareto filtering will be required.

Reference: Das I. and Dennis J, "Normal-Boundary Intersection: A New Method for Generating Pareto Optimal Points in Multicriteria Optimization Problems", SIAM Journal on Optimization, Vol. 8, No.3, 1998, pp. 631-657

Adaptive Weighted Sum Method for Bi-objective Optimization

References:

Kim I.Y. and de Weck O.L., "Adaptive weighted-sum method for bi-objective optimization: Pareto front generation", *Structural and Multidisciplinary Optimization*, <u>29</u> (2), 149-158, February 2005

Kim I.Y. and de Weck, O., "Adaptive weighted sum method for multiobjective optimization: a new method for Pareto front generation", *Structural and Multidisciplinary Optimization*, <u>31</u> (2), 105-116, February 2006

AWS MOO - Motivation

Drawbacks of Weighted Sum Method

(1) An even distribution of the weights among objective functions does not always result in an even distribution of solutions on the Pareto front.

In real applications, solutions quite often appear only in some parts of the Pareto front, while no solutions are obtained in other parts.

(2) The weighted sum approach cannot find solutions on non-convex parts of the Pareto front although they are non-dominated optimum solutions (Pareto optimal solutions). This is due to the fact that the weighted sum method is often implemented as a convex combination of objectives. Increasing the number of weights by reducing step size does not solve this problem.

Overall Procedure

Convex Region with Non-Constant Curvature

Usual weighted sum method produces non-uniformly distributed solutions.

AWS focuses more on unexplored regions.

Non-convex Region: Non-Dominated Solutions

Usual weighted sum method cannot find Pareto optimal solutions in non-convex regions.

AWS determines Pareto optimal solutions in non-convex regions.

Non-Convex Region: Dominated Solutions

NBI erroneously determines dominated solutions as Pareto optimal solutions, so a Pareto filter is needed.

AWS neglects dominated solutions in non-convex regions.

Procedure (1)

[Step 1] Normalize the objective functions in the objective space

 $\overline{J}_{i} = \frac{J_{i} - J_{i}^{U}}{J_{i}^{N} - J_{i}^{U}}.$ $\mathbf{J}^{U} = [J_{1}(\mathbf{x}^{1^{*}}), J_{2}(\mathbf{x}^{2^{*}})] : \text{Utopia point}$ $\mathbf{J}^{N} = [J_{1}^{N}, J_{2}^{N}] \quad \text{where } J_{i}^{N} = \max[J_{i}(\mathbf{x}^{1^{*}}) \ J_{i}(\mathbf{x}^{2^{*}})] : \text{Nadir point}$ $\mathbf{x}^{i^{*}} : \text{Optimal solution vector for the single objective optimization}$

[Step 2] Perform multiobjective optimization using the usual weighted sum approach

$$\Delta \alpha = \frac{1}{n_{\text{initial}}}$$
: Uniform step size of the weighting factor

[Step 3] Delete nearly overlapping solutions on the Pareto front.

[Step 4] Determine the number of further refinements in each of the regions.

The longer the segment is, relative to the average length of all segments, the more it needs to be refined. The refinement is determined based on the relative length of the segment:

$$n_i = round\left(C\frac{l_i}{l_{avg}}\right)$$
 for the *i*th segment

[Step 5] If n_i is less than or equal to one, no further refinement is conducted in the segment. For other segments whose number of further refinements is greater than one, go to the following step.

Procedures (3)

[Step 6] Determine the offset distances from the two end points of each segment

First, a piecewise linearized secant line is made by connecting the end points,

M lesd

[Step 7] Impose additional inequality constraints and conduct suboptimization with the weighted sum method in each of the feasible regions.

$$\begin{array}{ll} \min & \alpha \overline{J}_{1}(x) + (1 - \alpha) \overline{J}_{2}(x) \\ \text{s.t.} & \overline{J}_{1}(x) \leq P_{1}^{x} - \delta_{1} \\ & \overline{J}_{2}(x) \leq P_{2}^{y} - \delta_{2} \\ & h(x) = 0 \\ & g(x) \leq 0 \\ & \alpha \in [0,1] \end{array}$$
The uniform step size of the weighting factor for each feasible region is determined by the number of refinements (Step 4):
$$\Delta \alpha_{i} = \frac{1}{n_{i}}$$

[Step 8] Convergence Check

Compute the length of the segments between all the neighboring solutions. If all segment lengths are less than a prescribed maximum length, terminate the optimization procedure. If there are segments whose lengths are greater than the maximum length, go to Step 4.

minimize
$$\begin{bmatrix} J_1 = x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 \\ J_2 = 3x_1 + 2x_2 - \frac{x_3}{3} + 0.01(x_4 - x_5)^3 \end{bmatrix}$$
subject to $x_1 + 2x_2 - x_3 - 0.5x_4 + x_5 = 2,$ $4x_1 - 2x_2 + 0.8x_3 + 0.6x_4 + 0.5x_5^2 = 0,$ $x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 \le 10$

Das, I., and Dennis, J. E., "Normal-Boundary Intersection: A New Method for Generating Pareto Optimal Points in Multicriteria Optimization Problems," SIAM Journal on Optimization, Vol. 8, No. 3, 1998, pp. 631-657.

© Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox Engineering Systems Division and Dept. of Aeronautics and Astronautics 16.888 ESD 77

Example 1: (Convex Pareto front) - Results

AWS (Adaptive weighted Sum) method)

	WS	NBI	AWS
No. of solutions	17	17	17
CPU time (sec)	1.71	2.43	3.83
Length variance (×10 ⁻ ⁴)	266	0.23	2.3

s Institute of Technology - Prof. de Weck and Prof. Willcox stems Division and Dept. of Aeronautics and Astronautics

Example 2: Non-convex Pareto front - NBI

© Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox Engineering Systems Division and Dept. of Aeronautics and Astronautics 16.888 ESD.77

© Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox Engineering Systems Division and Dept. of Aeronautics and Astronautics 16.888

ESO 77

Example 3: Static Truss Problem

16.888

Koski, J., "Defectiveness of weighting method in multicriterion optimization of structures," Communications in Applied Numerical Methods, Vol. 1, 1985, pp. 333-337

Example 3: Static Truss Problem

16.888 ESD.77

AWS

Example 3: Static Truss Problem

Solutions for different offset distances

Koski, J., "Defectiveness of weighting method in multicriterion optimization of structures," Communications in Applied Numerical Methods, Vol. 1, 1985, pp. 333-337 Division and Dept. of Aeronautics and Astronautics 16.888 ESD.77

AWS

Solutions for different offset distances

16.888 ESD.77

The adaptive weighted sum method effectively approximates the Pareto front by gradually increasing the number of solutions on the front.

- (1) AWS produces well-distributed solutions.
- (2) AWS finds Pareto solutions on non-convex regions.
- (3) AWS automatically neglects non-Pareto optimal solutions.
- (4) AWS is potentially more robust in finding optimal solutions than other methods where equality constraints are applied.

AWS has been extended to multiple objectives (z>2), however, needed to introduce equality constraints for z>2.

Multiobjective Heuristics

16.888 ESD.77

Pareto Fitness - Ranking

Recall: <u>Multiobjective GA</u>

- Pareto ranking scheme
- Allows ranking of population without assigning preferences or weights to individual objectives
- Successive ranking and removal scheme
- Deciding on fitness of dominated solutions is more difficult.

Objective 1 $f_1 \ x_1, ..., x_n = 1 - \exp \left[-\sum_{i=1}^n \left(x_i - \frac{1}{\sqrt{n}} \right) \right]$

 $f_1 \ x_1, \dots, x_n = 1 - \exp \left| -\sum_{i=1}^n \left(x_i + \frac{1}{\sqrt{n}} \right)^2 \right|$

16.888

esd

Minimization

Example Multiobjective GA

30

Mest Double Peaks Example: MO-GA

Multiobjective Genetic Algorithm (MOGA)

Generation 1

Generation 10

Utility Function Approach

16.888

ESO.

Want: - temperature in ideal range 68-72 °F - humidity above 56% is undesirable

Assume: $T = \mathbf{c}^{1}\mathbf{x}$ temperature $H = \mathbf{c}^{2}\mathbf{x}$ humidity

Engineering Systems Division and Dept. of Aeronautics and Astronautics

Aggregated Utility

The total utility becomes the weighted sum of partial utilities: ... sometimes called multi-attribute utility analysis (MAUA)

E.g. two utilities combined: $U J_1, J_2 = Kk_1k_2U(J_1)U(J_2) + k_1U(J_1) + k_2U(J_2)$

Combine single utilities into overall utility function:

ki's determined during interviews K is dependent scaling factor

For 2 objectives: $K = (1 - k_1 - k_2) / k_1 k_2$

Steps: MAUA
1. Identify Critical Objectives/Attrib.
2. Develop Interview Questionnaire
3. Administer Questionnaire
4. Develop Agg. Utility Function
5. Analyze Results

Caution: "Utility" is a surrogate for "value", but while "value" has units of [\$], utility is unitless.

Mesd Notes about Utility Maximization

- Utility maximization is very common well accepted in some communities of practice
- Usually U is a non-linear combination of objectives J
- Physical meaning of aggregate objective is lost (no units)
- Need to obtain a mathematical representation for $U(J_i)$ for all *I* to include all components of utility
- Utility function can vary drastically depending on decision maker ...e.g. in U.S. Govt change every 3-4 years

constrained case

If **x*** is non-inferior (=Pareto optimal) it satisfies the following KKT conditions:

a.) \mathbf{x}^* is feasible, i.e. $\mathbf{x}^* \in S$ and $S = \emptyset$

b.) all objective functions J_i and constraints g_j are differentiable³

c.) At **x*** the constraints are satisfied $g_j(\mathbf{x}^*) \le 0 \quad \forall \ j = 1, 2, ..., m$

and $\lambda_j g_j(\mathbf{x}^*) = 0$ whereby $\lambda_j \ge 0 \forall j = 1, ..., m$

d.) There exist $\mu_i \ge 0 \forall i = 1, ..., n$ with strict inequality holding for at least one *i* such that

the condition
$$\sum_{i=1}^{n} \mu_i \nabla J_i(x^*) + \sum_{i=1}^{m} \lambda_j \nabla g_i(x^*) = 0$$
 is true.

These are the KKT conditions with n objectives

One of the main jobs of the system designer (together with the system architect) is to identify the principle tensions and resolve them

MO in iSIGHT

Screenshot of weighted sum optimization in iSIGHT software

(Engineous) removed due to copyright restrictions.

Traditional iSIGHT is set up to do weighted-sum optimization

Note: Weights and Scale Factors in Parameters Table

Newer versions Have MOGA capability.

Mese Multiobjective Optimization Game

Task: Find an optimal layout for a new city, which comprises 5x5 sqm and 50'000 inhabitants that will satisfy multiple disparate stakeholders.

So ooo mhabilants that will satisfy multiple disparate stakeholders.

Decision Space (I)

All zones (except vacant) must be connected to each other via one of the following roads

Decision Space (II)

Objective Space

Objective Vector

Weights Vector Λ

E.g. want to weigh short commute the highest

$\Lambda = \lambda_1 \quad \lambda_2 \quad \lambda_3 \quad \lambda_4 \quad \lambda_5 = 500 \quad 125 \quad 125 \quad 100 \quad 150$

Sum of weights must be 1000

Fixed: City Population: 16,000 Hwy Connectors: 1W, 25E

Constraints:

(1) minimum 1 residential zone

(2) Hwy - must be connected somehow from upper left zone (1,1) to lower right zone (5,5)

- Two fundamental approaches to MOO
 - Scalarization of multiple objectives to a single combined objective (e.g. utility approach)
 - Pareto Approach with a-posteriori selection of solutions
- Methods for computing Pareto Front
 - Weighted Sum Approach
 - Design Space Exploration + Pareto Filter
 - Normal Boundary Intersection (NBI)
 - Adaptive Weighted Sum (AWS)
 - Multiobjective Heuristic Algorithms (e.g. MOGA)
- Resolving tradeoffs is essential in system design

Mesd

References

[1] Pareto, V., Manuale di Economia Politica, Societa Editrice Libraria, Milano, Italy, Translated into English by Schwier, A. S. 1971: *Manual of Political Economy*, Macmillan, New York, 1906. [2] Stadler, W., "A Survey of Multicriteria Optimization, or the Vector Maximum Problem," Journal of Optimization Theory and Applications, Vol. 29, 1979, pp. 1-52. [3] Stadler, W., "Applications of Multicriteria Optimization in Engineering and the Sciences (A Survey)," Multiple Criteria Decision Making – Past Decade and Future Trends, edited by M. Zeleny, JAI Press, Greenwich, Connecticut, 1984. [4] Zadeh, L., "Optimality and Non-Scalar-Valued Performance Criteria," IEEE Transactions on Automatic Control, AC-8, 59, 1963. [5] Koski, J., "Multicriteria truss optimization," *Multicriteria Optimization in Engineering and in the* Sciences, edited by Stadler, New York, Plenum Press, 1988. [6] Marglin, S. Public Investment Criteria, MIT Press, Cambridge, Massachusetts, 1967. [7] Steuer, R. E., Multiple Criteria Optimization: Theory, Computation and Application, John Wiley & Sons, New York, 1986. [8] Lin, J., "Multiple objective problems: Pareto-optimal solutions by method of proper equality

constraints," *IEEE Transactions on Automatic Control*, Vol. 21, 1976, pp. 641-650.

M esd

46

References (cont.)

[9] Suppapitnarm, A. et al., "Design by multiobjective optimization using simulated annealing," *International conference on engineering design ICED 99*, Munich, Germany, 1999.

[10] Goldberg, D. E., *Genetic Algorithms in Search, Optimization and Machine Learning*, Addison Wesley, 1989.

[11] Fonseca, C., and Fleming, P., "An overview of evolutionary algorithms in multiobjective optimization," *Evolutionary Computation*, Vol. 3, 1995, pp. 1-18.

[12] Tamaki, H., Kita, H., and Kobayashi, S., "Multiobjective optimization by genetic algorithms: a review," *1996 IEEE International Conference on Evolutionary Computation*, ICEC '96, Nagoya, Japan, 1996.
[13] Messac, A., and Mattson, C. A., "Generating Well-Distributed Sets of Pareto Points for Engineering Design using Physical Programming," *Optimization and Engineering*, Kluwer Publishers, Vol. 3, 2002, pp. 431-450.

[14] Mattson, C. A., and Messac, A., "Concept Selection Using s-Pareto Frontiers," *AIAA Journal*. Vol. 41, 2003, pp. 1190-1204.

[15] Das, I., and Dennis, J. E., "Normal-Boundary Intersection: A New Method for Generating Pareto Optimal Points in Multicriteria Optimization Problems," *SIAM Journal on Optimization*, Vol. 8, No. 3, 1998, pp. 631-657.

[16] Das, I., and Dennis, J. E., "A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems," *Structural Optimization*, Vol. 14, 1997, pp. 63-69.

[17] Koski, J., "Defectiveness of weighting method in multicriterion optimization of structures," *Communications in Applied Numerical Methods*, Vol. 1, 1985, pp. 333-337.

ESD.77 / 16.888 Multidisciplinary System Design Optimization Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.