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Introduction 

� Bayesian network are a knowledge representation 
formalism for reasoning under uncertainty. 

� A Bayesian network is a direct acyclic graph

encoding assumptions of conditional independence.


� In a Bayesian network, nodes are stochastic

variables and arcs are dependency between nodes.


� Bayesian networks were designed to encode 
explicitly encode “deep knowledge” rather than 
heuristics, to simplify knowledge acquisition, provide 
a firmer theoretical ground, and foster reusability. 
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Graph 

A graph (network) G(N,L) is defined by: 
Nodes: A finite set N = {A,B,...} of nodes (vertices). 
Arcs: A set L of arcs (edges): ordered pair of nodes. 
Set L is a subset of all possible pairs of nodes N. 
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L={(A,C),(B,C),(B,A)} L={(A,C),(B,C)} L={(A,C),(B,C),(B,A),(C,A),(C,B),(A,B)}
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Types of Graph
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Simple Tree Polytree 

Singly Connected 
(Tree) 

Multiply Connected 

Acyclic Cyclic 

Connected Disconnected 

Directed Undirected 

Graph 
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Direction 

Direction of a link: 
Directed: if (A,B) is in N, then (B,A) is not in N. 
Undirected: if (A,B) is in N, then (B,A) is in N. 
Note: The link — should be «. 

Characters: 
Adjacent set: the nodes one step away from A: 

Adj(A)={B|(A,B)˛L}. 
Path: The set of n nodes Xi from A to B via links: 
Loop: A closed path: X1 = Xn. 
Acyclic graph: A graph with no cycles. 
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Directed Graphs 

Parent: A is parent of B if there is a directed link AfiB. 
Family: The set made up by a node and its parents. 
Ancestor: A is ancestor of B if exists a path from A to B.

Ancestral set: A set of nodes containing their ancestors.

Cycle: A cycle is a closed loop of directed links.

Associated acyclic graph: The undirected graph 


obtained by dropping the direction of links.

Moral graph: The undirected graph obtained by.

� Marring the parents of a common child. 
� Dropping the directions of the links. 

A 

B C 

D E 
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Trees 

Tree: If every pair of nodes there is at most one path. 
Simple Tree: Each node has at most one parent. 
PolyTree: Nodes can have more than one parent.


Multiply Connected Graph: A graph where at least one 
pair of nodes has more than one path. 
Note: The associated undirected graph has a loop.
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Bayesian Networks

Qualitative: A dependency graph made by:
Node: a variable X, with a set of states {x1,…,xn}.
Arc: a dependency of a variable X on its parents P.

Quantitative: The distributions of a variable X given 
each combination of states pi of its parents P.

E

A

I

A p(A)
Y 0.3
O 0.7

A p(A)
Y 0.3
O 0.7

E p(E)
L 0.8
H 0.2

E p(E)
L 0.8
H 0.2

A E I p(I|A,E) 
Y L L 0.9 
Y L H 0.1 
Y H L 0.5 
Y H H 0.5 
O L L 0.7 
O L H 0.3 
O H L 0.2 
O H H 0.8 

 

 

A E I p(I|A,E) 
Y L L 0.9 
Y L H 0.1 
Y H L 0.5 
Y H H 0.5 
O L L 0.7 
O L H 0.3 
O H L 0.2 
O H H 0.8 

 

 

A=A=AgeAge; E=; E=EducationEducation; I=; I=IncomeIncome



Independence 

� Perfect dependence between Disease and Test: 

Test 
0 1 

0 100 0 
1 0 100 

Disease Test 
0 1 

0 1 0 
1 0 1 

Disease 

� Independence between Disease and Test: 

Test 
0 1 

0 50 50 
1 40 60 

Disease Test 
0 1 

0 0.5 0.5 
1 0.4 0.6 

Disease 

Exercise: Compute the CPT for Test given Disease. 
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Why Do We Care? 

� Independence simplifies models: if two variables are 
independent, I do not need to model their interaction 
but I can reason about them separately. 

� In this form of independence, called marginal 
independence, however, a variable will tell me 
nothing about another variable, by design. 

� There is another, more useful, form of independence, 
which maintains the connection between variables 
but, at the same time, breaks down the whole system 
in separate regions: conditional independence. 

� This is independence used by Bayesian networks. 
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Conditional Independence 

� When two variables are independent given a third, 
they are said to be conditionally independent. 

p(A|B � C)=p(A � B � C)/p(B � C)=p(A|C).


Literacy 

T-shirt Yes No 

Small 0.32 0.68 

Large 0.35 0.65 

Literacy 

Age T-shirt Yes No 

<5 Small 0.3 0.7 

<5 Large 0.3 0.7 

>5 Small 0.4 0.6 

>5 Large 0.4 0.6 
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Bayesian Networks 

� Bayesian networks use graphs to capture these 
statement of conditional independence. 

� A Bayesian network (BBN) is defined by a graph: 
� Nodes are stochastic variables. 
� Links are dependencies. 
� No link means independence given a parent. 

� There are two components in a BBN:

� Qualitative graphical structure.

� Quantitative assessment of probabilities. 

LiteracyT-shirt 

Age 
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Decomposition 

� BBNs decompose the joint probability distribution 
with the graph of conditional independence. 

� Therefore, the graphical structure factorizes the joint 
probability distribution: 

p(A � B � C) = p(A|C) · p(B|C) · p(C).


BA 

C 
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Markov Equivalence 

�	 Different network structures may encode the same 
conditional independence statements: 

A and B are conditionally independent given C.


can be encoded by 3 different network structures.


�	 In all these network structures, the information flow 
running between A and B along the direction of the 
arrows is mediated by the node C. 

BA C BA C 

BA C 
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Example


Background knowledge: General rules of behavior. 
p(Age=<5)=0.3 
p(T-shirt=small| Age=<5)=0.5 
p(T-shirt=small|Age=>5)=0.3 
p(Literacy=yes|Age=>5)=0.6 
p(Literacy=yes|Age=<5)=0.2. 

Evidence: Observation p(T-shirt=small). 
Solution: The posterior probability distribution of the unobserved nodes 

given evidence: p(Literacy| T-shirt=small) and p(Age| T-shirt=small). 
p(Age=<5,T-shirt=small,Literacy=yes)
p(Age=<5,T-shirt=small,Literacy=no)
p(Age=<5,T-shirt=large,Literacy=yes)
p(Age=<5,T-shirt=large,Literacy =no)
p(Age=>5,T-shirt=small,Literacy=yes)
p(Age=>5,T-shirt=small,Literacy=no)
p(Age=>5,T-shirt=large,Literacy=yes)
p(Age=>5,T-shirt=large, Literacy=no). 

LiteracyT-shirt 

Age 
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Reasoning 

Components of a problem: 
Knowledge: graph and numbers.

Evidence: e={c and g}.

Solution: p(d|c,g)=?


Note: Lower case is an instance. 

C 

GF 

D 

A B 

E 

A p(A) 
0 0.3 
1 0.7 

B p(B) 
0 0.6 
1 0.4 

E p(E) 
0 0.1 
1 0.9 

A C p(C|A) 
0 0 0.25 
0 1 0.75 
1 0 0.50 
1 1 0.50 

D F p(F|D) 
0 0 0.80 
0 1 0.20 
1 0 0.30 
1 1 0.70 

A B D p(D|A,B) 
0 0 0 0.40 
0 0 1 0.60 
0 1 0 0.45 
0 1 1 0.55 
1 0 0 0.60 
1 0 1 0.40 
1 1 0 0.30 
1 1 1 0.70 

D E G p(G|D,E) 
0 0 0 0.90 
0 0 1 0.10 
0 1 0 0.70 
0 1 1 0.30 
1 0 0 0.25 
1 0 1 0.75 
1 1 0 0.15 
1 1 1 0.85 
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Brute Force 

� Compute the Joint Probability Distribution: 

p(a,b,c,d,e,f,g)=p(a)p(b)p(c|d)p(d|a,b)p(e)p(f|d)p(g|d,e).


� Marginalize out the variable of interest: 
p(d)=S p(a,b,c,e,f,g). 

Note: We have replaced � with , 

Cost: 2n probabilities (26 = 64).
 4500 
4000 

3500 
3000 

2500 
2000 

1500 
1000 

500 

0 
2 4 6 8 10 12
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Decomposition 

Decomposition: D breaks the BBN into two BBNs: 

p(d)= S p(a)p(b)p(c|a)p(d|a,b)p(e)p(f|d)p(g|d,e)=.


= (S p(a)p(b)p(c|a)p(d|a,b)) (S p(e)p(f|d)p(g|d,e)). 

Saving: We move from 64 to 23 + 23=16, and most of all 
the terms move from 7 to 4 and from 7 to 3. 

D-separation: the basic idea is based on a property of 
graphs called d-separation (directed-separation). 
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Propagation in Polytrees 

� In a polytree, each node breaks the graph into two 
independent sub-graphs and evidence can be 
independently propagated in the two graphs: 
� E+: evidence coming from the parents (E+ = {c}).

� E-: evidence coming from the children (E- = {g}).


GF 

D E 

C D 

A B 
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Message Passing 

� Message passing algorithm (Kim & Pearl 1983) is a 
local propagation method for polytrees. 

� The basic idea is that p(d) is actually made up by

parent component p(d) and a south component l(d).


� The basic idea is to loop and pass p and l messages 
between nodes until no message can be passed. 

� In this way, the propagation is entirely distributed and 

the computations are locally executed in each node.
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Algorithm 

Input: A BBN with a set of variables X and a set of 
evidential statements e = {A=a,B=b,…}. 

Output: Conditional probability distribution p(X|e) for 
each non evidential variable X. 

Initialization Step: 
Each evidential variable X, 

if x ˛ e p(x)=1, else p(x)=0. 
if x ˛ e l(x)=1, else l(x)=0. 

Each non evidential root variable X, p(x) = p(x). 
Each non evidential childless variable X, l(x)=1.
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Algorithm II 

� Iteration Step (on non evidential variables X/e): 
If X has all the p-messages from its parents, p(x). 
If X has all the l-messages from its children, l(x).

If p(x), for each child, if l -messages from all other 

children are in, send p-message to child. 
If l(x), for each parent, if p-messages from all other 

parents are in, send l-message to parent. 
Repeat until no message is sent. 

� Closure: 
� For each X/e, compute b(x)= p(x) l(x). 
� For each X/e, compute p(x)= b(x)/S l(xi). 

HST 951




Properties 

Distributed: Each node does not need to know about 
the others when it is passing the information around. 

Parallel architecture: Each node can be imagined as a 
separate processor. 

Complexity: Linear in the number of nodes. 

Limitations: Confined to a restricted class of graphs 
and, most of all, unable to represent an important 
class of problems. 

Importance: Proof of feasibility - Bayesians are not just 
dreamers after all. 
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Multiply Connected BBN 

When the BBN is a multiply connected graph. 
The associated undirected graph contains a loop. 
Each node does not break the network into 2 parts. 
Information may flow through more than one paths. 
Pearl’s Algorithm is no longer applicable. 
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Methods 

� Main stream methods: 
� Conditioning Methods. 
� Clustering Methods. 

� The basic strategy is: 
� Turn multiply connected graph in something else. 
� Use Pearl’s algorithm to propagate evidence. 
� Recover the conditional probability p(x|e) for X. 

� Methods differ in the way in which. 
� What they transform the graph into. 
� The properties they exploit for this transformation. 
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Conditioning Methods 

The transformation strategy is: 
� Instantiate a set of nodes (cutset) to cut the loops. 
� Absorb evidence and change the graph topology. 
� Propagate each BBN using Pearl’s algorithm. 
� Marginalize with respect to the loop cutset. 

E=e
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GF 
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C 

GF 
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Algorithm 

Input: a (multiply connected) BBN and evidence e. 

Output: the posterior probability p(x|e) for each X. 

Procedure: 
1. Identify a loop cutset C=(C1, …, Cn). 
2. For each member of combinations c=(c1, …, cn). 
� Generate a polytree BBNs for each c. 
� Use Pearl’s Algorithm to compute p(x|e,c1,…,cn). 
� Compute p(c1,…, cn| e) = p(e |c1,…,cn)p(c1,…,cn) /p(e). 

3. For each node X, 
� a=p(x|e) � Scp(x|e,c1,…,cn)p(e|c1,…,cn)p(c1,…,cn), 
� Compute p(x|e)= a/Sxp(x). 
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Complexity 

� The computational complexity is exponential in the 
size of the loop cutset, as we must generate and 
propagate a BBN for each combination of states of 
the loop cutset. 

� The identification of the minimal loop cutset of a BBN 
is NP-hard, but heuristic methods exist to make it 
feasible. 

� The computational complexity is a problem common 
to all methods moving from polytrees to multiply 
connected graphs. 

HST 951




Example 

� A Multiply connected BBN 

� No evidence 
B 

FE 

C 

A 

D 

A p(A) 
0 0.3 
1 0.7 

A B p(B|A) 
0 0 0.4 
0 1 0.6 
1 0 0.1 
1 1 0.9 

A C p(C|A) 
0 0 0.2 
0 1 0.8 
1 0 0.50 
1 1 0.50 

B C E p(E|B,C) 
0 0 0 0.4 
0 0 1 0.6 
0 1 0 0.5 
0 1 1 0.5 
1 0 0 0.7 
1 0 1 0.3 
1 1 0 0.2 
1 1 1 0.8 

B D p(D|B) 
0 0 0.3 
0 1 0.7 
1 0 0.2 
1 1 0.8 

C F p(F|C) 
0 0 0.1 
0 1 0.9 
1 0 0.4 
1 1 0.6 
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Example


� Loop cutset: {A}. 
� p(B=0)=p(B=0|A=0)p(A=1) + p(B=0|A=1)p(A=1). 

A 
0 1.000 
1 0.000 

A 
0 0.000 
1 1.000 

B 
0 0.400 
1 0.600 

C 
0 0.200 
1 0.800 +


B 
0 0.100 
1 0.900 

C 
0 0.500 
1 0.500 

D 
0 0.240 
1 0.760 

E 
0 0.372 
1 0.628 

F 
0 0.340 
1 0.660 

D 
0 0.210 
1 0.790 

E 
0 0.450 
1 0.550 

F 
0 0.250 
1 0.750 

A 
0 0.300 
1 0.700 

B 
0 0.190 
1 0.810 

C 
0 0.410 
1 0.590 

D 
0 0.219 
1 0.781 

E 
0 0.427 
1 0.573 

F 
0 0.277 
1 0.723 
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Clustering Methods 

The basic strategy (Lauritzen & Spiegelhalter 1988) is: 
1.	 Convert a BBN in a undirected graph coding the 

same conditional independence assumptions. 
2. Ensure the resulting graph is decomposable. 
3.	 This operation clusters nodes in locally 

independent subgraphs (cliques). 
4.	 These cliques are joint to each other via a single 

nodes. 
5. Produce a perfect numbering of nodes. 
6. Recursively propagate evidence. 
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Markov Networks 

� A Markov network is a based on undirected graphs:


BBN : DAG = Markov Network : Undirected Graph.


� Markov networks encode conditional independence

assumptions (as BBNs) using a Undirected Graph:

1. A link between A and B means dependency. 
2.	 A variable is independent of all not adjacent 

variables given the adjacent ones. 

Example: E is independent from 
(A,B,D) given C. 

D 

C 

A 

B 

E 
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Decomposable 

� Decomposable Markov networks lead to efficiency: 
� A Markov network is said to be decomposable 

when it contains no cycle with longer than 3 (there 
is no unbroken cycle with more than 3 nodes). 

� The joint probability distribution of the graph can be 
factorized by the marginal distributions of the cliques: 
� A clique is the largest sub-graph in which nodes 

are all adjacent to each other. 
� Therefore, a clique cannot be further simplified by 

conditional independence assumptions. 
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Triangulation 

� When a Markov network is not decomposable, we

triangulate the graph by including the missing links.


� The product of the joint probability of each clique, 
divided by the product of their intersection: 

p(a,b,c)=p(c|a)p(b|a)p(a). 

D 

A 

E 

CB 

D 

A 

E 

B C Moralize 
1.Marry parents 
2.Drop arrows 
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Reading Independence 

� The translation method via moralization reads the 
conditional independence statements in BBN. 

� DAGs cannot encode any arbitrary set of conditional 
independence assumptions. 

I(D,A|(B,C)) I(C,B|(A,D))


D 

A 

CB 

D 

A 

B C 

D 

A 

B C 

D 

CB 

A 
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Propagation 

� Compile the BBN into a moralized Markov network. 

� Maximum cardinality search: 

� For each clique Q compute p(q|e). 

� Within each cluster, marginalize p(x|e). 
3 

D 

A 

E 

B C 

D 

A 

E 

B C 

D 

A 

E 

B C 

1 

24 

5

HST 951




Who is the Winner? 

�	 Clustering is also NP-complete. The source of 
computational complexity is the size of the larger 
clique in the graph. 

�	 Global conditioning (Shachter, Andersen & Szolovits 
1994) shows that: 
1. Conditioning is a special case of Clustering. 
2. Conditioning is better at trading off memory-time. 
3.	 Conditioning is better suited for parallel 

implementations. 
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