Bayesian Networks Representation and Reasoning

Marco F. Ramoni
Children's Hospital Informatics Program
Harvard Medical School

HST 951 (2003)

Introduction

- * Bayesian network are a knowledge representation formalism for reasoning under uncertainty.
- * A Bayesian network is a direct acyclic graph encoding assumptions of conditional independence.
- * In a Bayesian network, nodes are stochastic variables and arcs are dependency between nodes.
- * Bayesian networks were designed to encode explicitly encode "deep knowledge" rather than heuristics, to simplify knowledge acquisition, provide a firmer theoretical ground, and foster reusability.

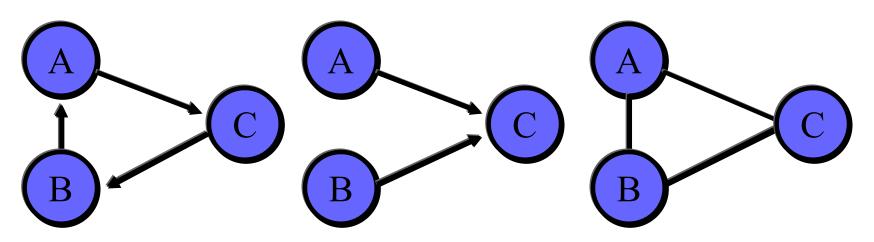
Graph

A graph (network) G(N,L) is defined by:

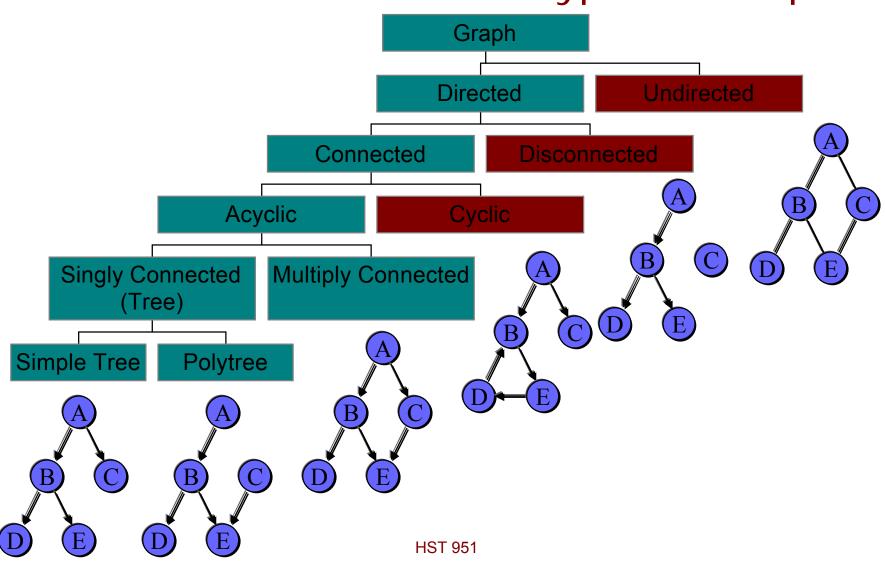
Nodes: A finite set $N = \{A, B, ...\}$ of nodes (vertices).

Arcs: A set *L* of arcs (edges): ordered pair of nodes.

Set L is a subset of all possible pairs of nodes N.



 $L=\{(A,C),(B,C),(B,A)\} \qquad L=\{(A,C),(B,C)\} \quad L=\{(A,C),(B,C),(B,A),(C,A),(C,B),(A,B)\}$



E

Direction

Direction of a link:

Directed: if (A,B) is in N, then (B,A) is not in N.

Undirected: if (A,B) is in N, then (B,A) is in N.

Note: The link — should be \leftrightarrow .

Characters:

Adjacent set: the nodes one step away from A:

$$Adj(A)=\{B|(A,B)\in L\}.$$

Path: The set of n nodes X_i from A to B via links:

Loop: A closed path: $X_1 = X_n$.

Acyclic graph: A graph with no cycles.

Directed Graphs

Parent: A is parent of B if there is a directed link $A \rightarrow B$.

Family: The set made up by a node and its parents.

Ancestor: A is ancestor of B if exists a path from A to B.

Ancestral set: A set of nodes containing their ancestors.

Cycle: A cycle is a closed loop of directed links.

Associated acyclic graph: The undirected graph obtained by dropping the direction of links.

Moral graph: The undirected graph obtained by.

- ✓ Marring the parents of a common child.
- Dropping the directions of the links.

Trees

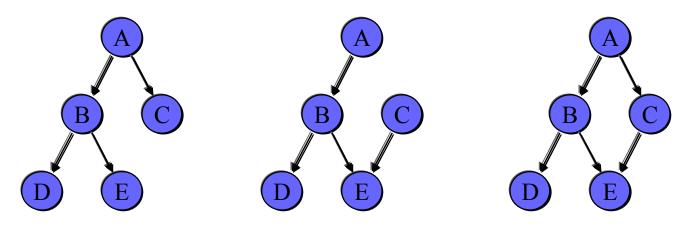
Tree: If every pair of nodes there is at most one path.

Simple Tree: Each node has at most one parent.

PolyTree: Nodes can have more than one parent.

Multiply Connected Graph: A graph where at least one pair of nodes has more than one path.

Note: The associated undirected graph has a loop.



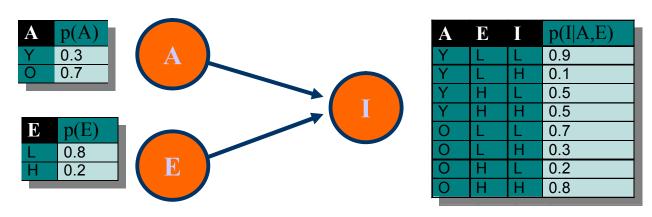
Bayesian Networks

Qualitative: A dependency graph made by:

Node: a variable X, with a set of states $\{x_1, ..., x_n\}$.

Arc: a dependency of a variable X on its parents Π .

Quantitative: The distributions of a variable X given each combination of states π_i of its parents Π .



A=Age; E=Education; I=Income

Independence

* Perfect dependence between Disease and Test:

Test	Diseas	e
	0	1
0	100	0
1	0	100

Test	Disease	
	0	1
0	1	0
1	0	1

* Independence between Disease and Test:

Test	Disease	
	0	1
0	50	50
1	40	60

Test	Disease	
	0	1
0	0.5	0.5
1	0.4	0.6

Exercise: Compute the CPT for Test given Disease.

Why Do We Care?

- * Independence simplifies models: if two variables are independent, I do not need to model their interaction but I can reason about them separately.
- * In this form of independence, called marginal independence, however, a variable will tell me nothing about another variable, by design.
- * There is another, more useful, form of independence, which maintains the connection between variables but, at the same time, breaks down the whole system in separate regions: conditional independence.
- * This is independence used by Bayesian networks.

Conditional Independence

Litoracy

* When two variables are independent given a third, they are said to be conditionally independent.

$$p(A|B \land C)=p(A \land B \land C)/p(B \land C)=p(A|C).$$

					Litera	Су
	Lite	eracy	Age	T-shirt	Yes	No
T-shirt	Yes	No	<5	Small	0.3	0.7
Small	0.32	0.68	<5	Large	0.3	0.7
Large	0.35	0.65	>5	Small	0.4	0.6
			>5	Large	0.4	0.6

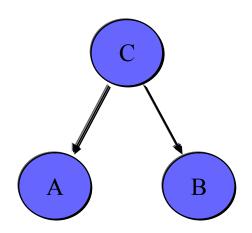
Bayesian Networks

- * Bayesian networks use graphs to capture these statement of conditional independence.
- * A Bayesian network (BBN) is defined by a graph:
 - Nodes are stochastic variables.
 - ✓ Links are dependencies.
 - ✓ No link means independence given a parent.
- * There are two components in a BBN:
 - Qualitative graphical structure.
 - Quantitative assessment of probabilities.

Decomposition

- * BBNs decompose the joint probability distribution with the graph of conditional independence.
- * Therefore, the graphical structure factorizes the joint probability distribution:

$$p(A \wedge B \wedge C) = p(A|C) \times p(B|C) \times p(C)$$
.



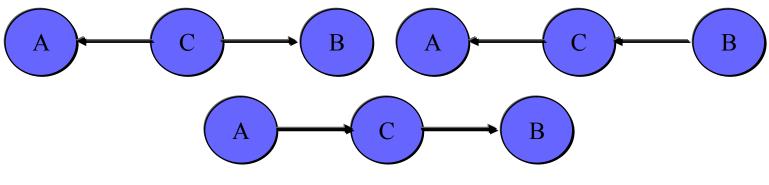
Markov Equivalence

Different network structures may encode the same conditional independence statements:

A and B are conditionally independent given C.

can be encoded by 3 different network structures.

* In all these network structures, the information flow running between A and B along the direction of the arrows is mediated by the node C.



Example

Background knowledge: General rules of behavior.

```
p(Age=<5)=0.3

p(T-shirt=small|Age=<5)=0.5

p(T-shirt=small|Age=>5)=0.3

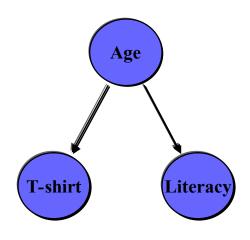
p(Literacy=yes|Age=<5)=0.6

p(Literacy=yes|Age=<5)=0.2
```

Evidence: Observation p(T-shirt=small).

Solution: The posterior probability distribution of the unobserved nodes given evidence: p(Literacy|T-shirt=small) and p(Age|T-shirt=small).

```
p(Age=<5, T-shirt=small, Literacy=yes)
p(Age=<5, T-shirt=small, Literacy=no)
p(Age=<5, T-shirt=large, Literacy=yes)
p(Age=<5, T-shirt=large, Literacy=no)
p(Age=>5, T-shirt=small, Literacy=yes)
p(Age=>5, T-shirt=large, Literacy=yes)
p(Age=>5, T-shirt=large, Literacy=no).
```



Reasoning

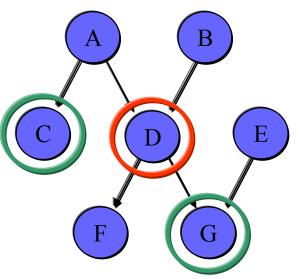
Components of a problem:

Knowledge: graph and numbers.

Evidence: e={c and g}.

Solution: p(d|c,g)=?

Note: Lower case is an instance.



A	p(A)
0	0.3
1	0.7

В	p(B)
0	0.6
1	0.4

E	p(E)
0	0.1
1	0.9

A	C	p(C A)
0	0	0.25
0	1	0.75
1	0	0.50
1	1	0.50

D	F	p(F D)
0	0	0.80
0	1	0.20
1	0	0.30
1	1	0.70

A	B	D	p(D A,B)
0	0	0	0.40
0	0	1	0.60
0	1	0	0.45
0	1	1	0.55
1	0	0	0.60
1	0	1	0.40
1	1	0	0.30
1	1	1	0.70

D	E	G	p(G D,E)
0	0	0	0.90
0	0	1	0.10
0	1	0	0.70
0	1	1	0.30
1	0	0	0.25
1	0	1	0.75
1	1	0	0.15
1	1	1	0.85

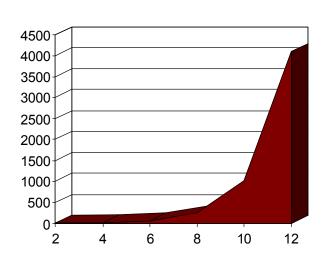
Brute Force

- Compute the Joint Probability Distribution:
- p(a,b,c,d,e,f,g)=p(a)p(b)p(c|d)p(d|a,b)p(e)p(f|d)p(g|d,e).
- Marginalize out the variable of interest:

$$p(d)=\Sigma p(a,b,c,e,f,g).$$

Note: We have replaced ∧ with,

Cost: 2^n probabilities ($2^6 = 64$).



Decomposition

Decomposition: D breaks the BBN into two BBNs:

$$p(d) = \sum p(a)p(b)p(c|a)p(d|a,b)p(e)p(f|d)p(g|d,e) = 0$$

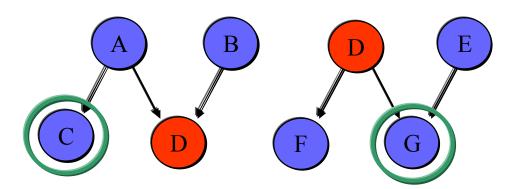
=
$$(\Sigma p(a)p(b)p(c|a)p(d|a,b)) (\Sigma p(e)p(f|d)p(g|d,e)).$$

Saving: We move from 64 to 2³ + 2³=16, and most of all the terms move from 7 to 4 and from 7 to 3.

D-separation: the basic idea is based on a property of graphs called d-separation (directed-separation).

Propagation in Polytrees

- * In a polytree, each node breaks the graph into two independent sub-graphs and evidence can be independently propagated in the two graphs:
 - ✓ E+: evidence coming from the parents (E+ = $\{c\}$).
 - ✓ E-: evidence coming from the children (E- = $\{g\}$).



Message Passing

- * Message passing algorithm (Kim & Pearl 1983) is a local propagation method for polytrees.
- * The basic idea is that p(d) is actually made up by parent component $\pi(d)$ and a south component $\lambda(d)$.
- * The basic idea is to loop and pass π and λ messages between nodes until no message can be passed.
- * In this way, the propagation is entirely distributed and the computations are locally executed in each node.

Algorithm

Input: A BBN with a set of variables X and a set of evidential statements $\varepsilon = \{A=a,B=b,...\}$.

Output: Conditional probability distribution $p(X|\epsilon)$ for each non evidential variable X.

Initialization Step:

Each evidential variable X,

```
if x \in p(x)=1, else p(x)=0.
```

if
$$x \in e | (x)=1$$
, else $| (x)=0$.

Each non evidential root variable X, $p(x) = \pi(x)$.

Each non evidential childless variable X, $\lambda(x)=1$.

Algorithm II

* Iteration Step (on non evidential variables X/e):

If X has all the π -messages from its parents, $\pi(x)$.

If X has all the λ -messages from its children, $\lambda(x)$.

If $\pi(x)$, for each child, if λ -messages from all other children are in, send π -message to child.

If $\lambda(x)$, for each parent, if π -messages from all other parents are in, send λ -message to parent.

Repeat until no message is sent.

* Closure:

- ✓ For each X/e, compute $\beta(x) = \pi(x) \lambda(x)$.
- ✓ For each X/e, compute $p(x) = \beta(x)/\sum \lambda(x_i)$.

Properties

Distributed: Each node does not need to know about the others when it is passing the information around.

Parallel architecture: Each node can be imagined as a separate processor.

Complexity: Linear in the number of nodes.

Limitations: Confined to a restricted class of graphs and, most of all, unable to represent an important class of problems.

Importance: Proof of feasibility - Bayesians are not just dreamers after all.

Multiply Connected BBN

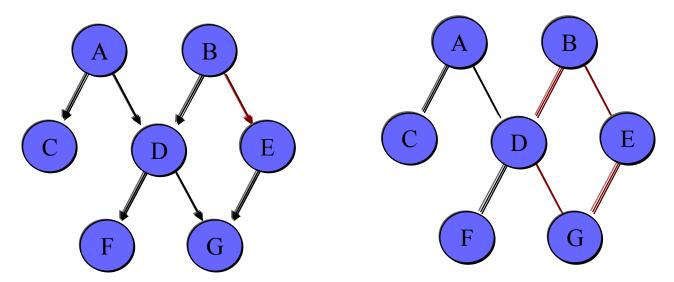
When the BBN is a multiply connected graph.

The associated undirected graph contains a loop.

Each node does not break the network into 2 parts.

Information may flow through more than one paths.

Pearl's Algorithm is no longer applicable.



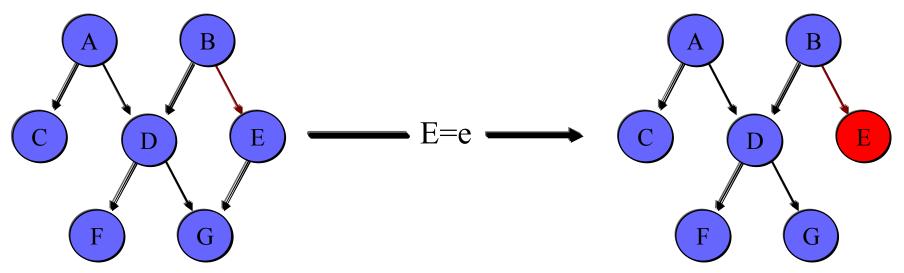
Methods

- * Main stream methods:
 - Conditioning Methods.
 - Clustering Methods.
- * The basic strategy is:
 - ✓ Turn multiply connected graph in something else.
 - ✓ Use Pearl's algorithm to propagate evidence.
 - \checkmark Recover the conditional probability p(x|e) for X.
- * Methods differ in the way in which.
 - What they transform the graph into.
 - ✓ The properties they exploit for this transformation.

Conditioning Methods

The transformation strategy is:

- ✓ Instantiate a set of nodes (cutset) to cut the loops.
- ✓ Absorb evidence and change the graph topology.
- ✓ Propagate each BBN using Pearl's algorithm.
- Marginalize with respect to the loop cutset.



Algorithm

Input: a (multiply connected) BBN and evidence e.

Output: the posterior probability p(x|e) for each X.

Procedure:

- 1. Identify a loop cutset $C=(C_1, ..., C_n)$.
- 2. For each member of combinations $c=(c_1, ..., c_n)$.
 - Generate a polytree BBNs for each c.
 - Use Pearl's Algorithm to compute $p(x|\epsilon,c_1,...,c_n)$.
 - Compute $p(c_1,...,c_n | \varepsilon) = p(\varepsilon | c_1,...,c_n)p(c_1,...,c_n) / p(\varepsilon)$.
- 3. For each node X,
 - $\sim \alpha = p(x|\epsilon) \propto \Sigma_c p(x|\epsilon,c_1,...,c_n) p(\epsilon|c_1,...,c_n) p(c_1,...,c_n),$
 - Compute $p(x|e) = \alpha/\Sigma_x p(x)$.

Complexity

- * The computational complexity is exponential in the size of the loop cutset, as we must generate and propagate a BBN for each combination of states of the loop cutset.
- * The identification of the minimal loop cutset of a BBN is NP-hard, but heuristic methods exist to make it feasible.
- * The computational complexity is a problem common to all methods moving from polytrees to multiply connected graphs.

Example

- * A Multiply connected BBN
- * No evidence

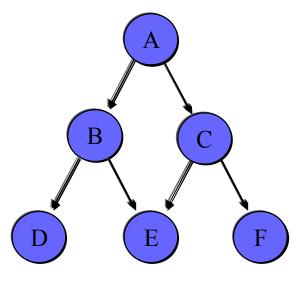
A	p(A)
0	0.3
1	0.7

A	B	p(B A)
0	0	0.4
0	1	0.6
1	0	0.1
1	1	0.9

B	D	p(D B)
0	0	0.3
0	1	0.7
1	0	0.2
1	1	0.8

A	\mathbf{C}	p(C A)
0	0	0.2
0	1	0.8
1	0	0.50
1	1	0.50

C	F	p(F C)
0	0	0.1
0	1	0.9
1	0	0.4
1	1	0.6

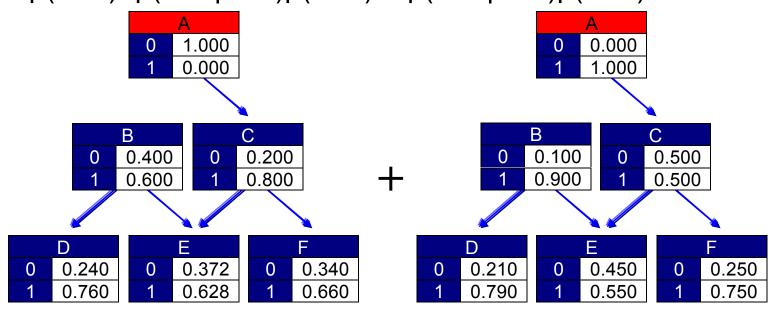


B	\mathbf{C}	E	p(E B,C)
0	0	0	0.4
0	0	1	0.6
0	1	0	0.5
0	1	1	0.5
1	0	0	0.7
1	0	1	0.3
1	1	0	0.2
1	1	1	0.8

Example

* Loop cutset: {A}.

*
$$p(B=0)=p(B=0|A=0)p(A=1) + p(B=0|A=1)p(A=1)$$
.



Α	
0 0.300	
1	0.700

	В
0	0.190
1	0.810

С	
0	0.410
1	0.590

	D
0	0.219
1	0.781

	Е
0	0.427
1	0.573

	F
0	0.277
1	0.723

Clustering Methods

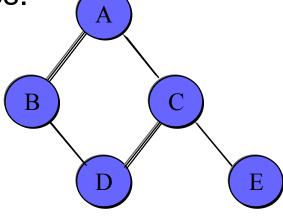
The basic strategy (Lauritzen & Spiegelhalter 1988) is:

- 1. Convert a BBN in a undirected graph coding the same conditional independence assumptions.
- 2. Ensure the resulting graph is decomposable.
- 3. This operation clusters nodes in locally independent subgraphs (cliques).
- 4. These cliques are joint to each other via a single nodes.
- 5. Produce a perfect numbering of nodes.
- 6. Recursively propagate evidence.

Markov Networks

- * A Markov network is a based on undirected graphs:
 - BBN: DAG = Markov Network: Undirected Graph.
- Markov networks encode conditional independence assumptions (as BBNs) using a Undirected Graph:
 - 1. A link between A and B means dependency.
 - 2. A variable is independent of all not adjacent variables given the adjacent ones.

Example: E is independent from (A,B,D) given C.

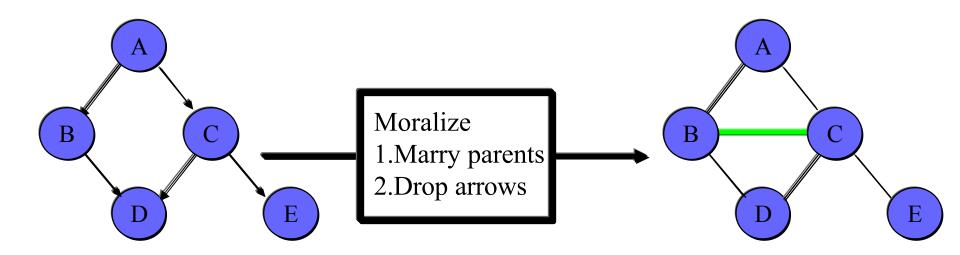


Decomposable

- * Decomposable Markov networks lead to efficiency:
 - ✓ A Markov network is said to be decomposable when it contains no cycle with longer than 3 (there is no unbroken cycle with more than 3 nodes).
- * The joint probability distribution of the graph can be factorized by the marginal distributions of the cliques:
 - ✓ A clique is the largest sub-graph in which nodes are all adjacent to each other.
 - ✓ Therefore, a clique cannot be further simplified by conditional independence assumptions.

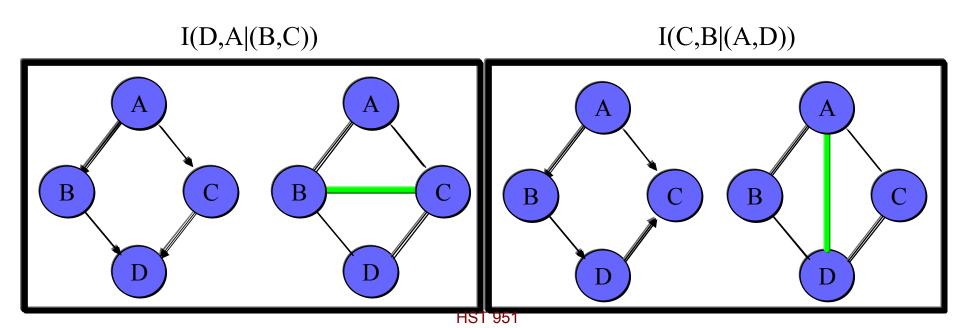
Triangulation

- * When a Markov network is not decomposable, we triangulate the graph by including the missing links.
- * The product of the joint probability of each clique, divided by the product of their intersection: p(a,b,c)=p(c|a)p(b|a)p(a).



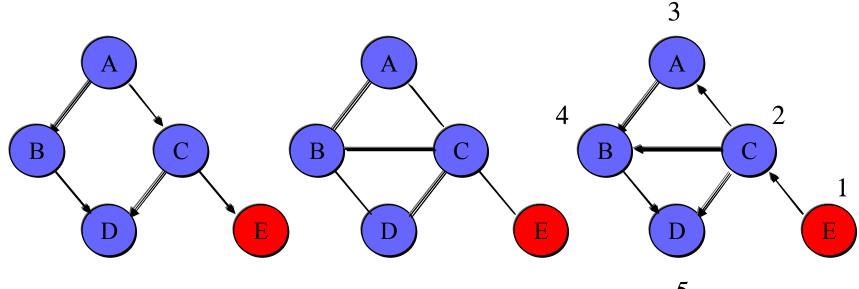
Reading Independence

- * The translation method via moralization reads the conditional independence statements in BBN.
- * DAGs cannot encode any arbitrary set of conditional independence assumptions.



Propagation

- * Compile the BBN into a moralized Markov network.
- * Maximum cardinality search:
- * For each clique Q compute p(q|e).
- * Within each cluster, marginalize p(x|e).



Who is the Winner?

- * Clustering is also NP-complete. The source of computational complexity is the size of the larger clique in the graph.
- * Global conditioning (Shachter, Andersen & Szolovits 1994) shows that:
 - 1. Conditioning is a special case of Clustering.
 - 2. Conditioning is better at trading off memory-time.
 - Conditioning is better suited for parallel implementations.