
Homework Assignment 2,
HST.950
Handed out: Lecture 6

Due in: Lecture 10

Building a Web-based EMR
For this problem, we ask you to explore techniques for how to
build a Web-based electronic medical record system. The
purpose of the assignment is to convince you, through personal
experience, that it is not immensely difficult to do at least a
simple job of building such a system, and that the power of the
Web and the availability of Web resources makes you very
powerful. To keep the assignment within bounds, we make the
following assumptions:

The EMR will be read-only. I.e., there is no way to enter

new data or revise existing data.

We will use the CWS database, with which you should

already be somewhat familiar from the first assignment.

We provide you with a specific implementation

environment that already includes some of the basics,

from which you can build extensions by re-using patterns

and tools already there. The specific environment we

provide is one that you are unlikely to have encountered

before, though students who have taken 6.171 are likely

to have a big leg up. We use the Resin web server, a

small and simple Java-based server. The Web site is

implemented in JSP (Java Server Pages), which allows

you to intersperse HTML fixed content with Java code to

compute the dynamic parts of a page. In addition, we

have built a few utility classes for Java that you may find

helpful (we have) in building this project. And, finally,

we have begun a small implementation of the EMR's

interface, which you will extend.

There are two (and a half) ways to do this part of the problem
set:

Use a system we have set up especially for the class.

<<This option is not available for OCW users.>>

Configure your own system to use the same technologies

we have set up:

1. 	Obtain your own copy of the Resin server (which

you may use freely for non-commercial

development). The current distribution appears to

be 2.1.7. Even a "simple" server has an immense

number of features and capabilities that lie far

outside our intended use. You can find

documentation on how to install and run Resin at

the Caucho web site or on the "top-level" site on

your machine after you have installed it.

2. Install a copy of the CWS database on your

machine. You may already have done this for the

first homework assignment. I developed this code

using the Access version, but currently I am using

MySQL and using the jdbc drivers for MySQL that

came with Resin. Presumably other methods would

work as well if they are supported on your system.

Please recall that this database has been

"scrubbed", so none of the names, addresses, dates,

etc. in the database should correspond to reality,

though the original data were all real. Just in (the

unlikely) case that we have mistakenly allowed

some identifying data past the scrubbing process,

please do not make these data public outside our

class.

 3. If you use Access, for which I don't know of direct

jdbc drivers, you will need to define a "System

DSN" ODBC data source that references the CWS

database. Call the data source "cws". This can be

done with "Control Panels\Administrative

Tools\Data Sources (ODBC)" on your Windows

XP, or something similar on other versions of

Windows.

 4. Copy the contents of the top-level FTP directory

described in the other alternative approach to your

machine. You may put it anywhere, but will have

to adjust the Resin configuration file to match. I

have it at c:\cws.

 5. Add definitions to the resin.conf file to define the

data source and the cws "web application". The

following works on my server:

<resource-ref>
<res-ref-name>jdbc/cws</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<init-param driver-name="com.caucho.jdbc.mysql.Driver"/>
<init-param url="jdbc:mysql_caucho://localhost:3306/cwsscrubbed"/>
<init-param user=""/>
<init-param password=""/>
<init-param max-connections="20"/>
<init-param max-idle-time="30"/>

</resource-ref>

and you also need to define the place where the

web directory is in your file system:

<web-app id='/cws'>

<app-dir>C:\cws</app-dir>

</web-app>

where C:\cws is the location chosen in step 4.

If you use Access instead of MySQL, I believe you

can just replace the corresponding lines above by

<init-param driver-name="sun.jdbc.odbc.JdbcOdbcDriver"/>

Harvard-MIT Division of Health Sciences and Technology��
HST.950J: Medical Computing��

fleach
Text Box
Peter Szolovits, PhD Isaac Kohane, MD, PhD Lucila Ohno-Machado, MD, PhD

<init-param url="jdbc:odbc:cws"/>

The half-method: If you are very comfortable building

database-backed web sites (e.g., you have done well in

6.171), feel free to build this any way you like.

Explore

First, connect to the skeletal server and note the functionality
that we initially provide. The main server page simply lists all
the patients in the CWS database alphabetically, along with
their "PAT_NUM" identifiers. Each name links to a (dynamic)
page that will display information specific to that patient. In the
skeleton, this includes only demographics and the problem list,
though obviously much other data also exists in the CWS
database about these patients.

Take a look at the index.jsp source code for the top page of the
site:

<h1>CWS Database</h1>

<table border="0" cellspacing="5">

<tr><th>#</th><th>Patient</th></tr>

<%

SqlAccess s = null;

try {

s = new SqlAccess("jdbc/cws");

List people = s.retrieveAll("select pat_num,last_name,first_name,title as mid_initl from pat_demograph order by last_name,first_name,mid_initl");

Iterator it=people.iterator();

while (it.hasNext()) {

Entity b = (Entity)it.next();

EnglishName n = new EnglishName(b.getS("last_name"),

b.getS("first_name"),

b.getS("mid_initl"));

out.write("<tr><td align=\"right\">" + b.getS("pat_num")
+ "</td><td><a href=\"pt.jsp?id="
+ b.getS("pat_num") + "\">"
+ n.toString()
+ "</td></tr>\n");

}
}
finally {

if (s!=null) s.close();
}
%>
</table>

This code uses three utility classes defined in the edu.mit.lcs
package:

 1. 	SqlAccess: encapsulates connection and access to the

database. Provides methods retrieve and retrieveAll that

return the results of a SQL query. Retrieve yields an

Entity, and retrieveAll yields a List of Entities.

 2. 	Entity: An association-list that is used to represent rows

from a relational data base, field names/contents from an

HTML form, etc. get retrieves the value associated with

its argument, which is a String. getS is like get, but

yields an empty string instead of a null. getH is like

getS, but "HTML-encodes" its contents (e.g., "<" turns

into "<"). getMdyDate and getSqlDate turn various

formats of date strings into 12/31/1999-style and

1999-12-31-style dates.

3. 	EnglishName: Understands structured forms of

English-style names, which can be constructed from their

parts or by parsing a string containing the whole name.

toString and toFNF return the "Smith, Joseph" and

"Joseph Smith" versions. getXXX and setXXX methods

exist for each part of the name: first, last, middles, vons,

and suffix. This is modeled on BibTeX's analysis of

names.

The code above creates a SqlAccess object s that holds the
database connection. The call to retrieveAll selects name parts
and patient number from the patient demographics table. We
then iterate over all the elements of this list. For each one, we
create an EnglishName object, and output to the HTML page
being constructed one row of a table, which holds the patient
number, the last-name-first version of the name, and a
hyperlink to pt.jsp with this patient number as the id
argument. (Note that "title as mid_initl" solves an apparent
database bug, whereby patients' middle initials are stored under
"title".)

You can download the files referenced above (see assignments
section of OCW site):

index.jsp

pt.jsp

SqlAccess.java

Entity.java

EnglishName.java

Improve PubMed access

You will see in pt.jsp that for any patient who has problems
associated with his/her case, our skeleton code has hyperlinked
each problem name to a complex URL at the National Library
of Medicine's PubMed that shows the user "systematic review
articles" about the name of the problem. If you look at the
NLM's site that this code uses,
http://www.ncbi.nlm.nih.gov/entrez/query/static/clinical.html,
you will see that in fact there are also four other "research
methodology filters" that allow one to search for therapy,
diagnosis, prognosis and etiology-related articles about the
topic. Interestingly, the filters are actually relatively simple, but
have been shown in the Haynes reference to do a good job.
Hint: Where did I get the large URL embedded in pt.jsp, and
the other one in the comment near the end of that file?

Implement an extension to the display generated by pt.jsp that
allows the user to determine which of the five kinds of retrieval

PubMed is to perform on the text of the problem name. Think
about how your user would perceive various ways you might
design and implement this, and argue why you have chosen
your approach.

Add Laboratory lookup

The table pat_test_histv contains all the in-house Lab values
measured. Design and implement an interface that provides
high-level navigation tools to allow a user to look up labs for a
specific patient either chronologically (e.g., all lab values
measured today) or organized as time series by the quantity
measured (e.g., the sequence of serum creatinine values ever
measured). Because this table has indications of which values
are "normal" or not, be sure you indicate this visually. Note:
This is certainly an open-ended problem, but I urge you to
spend only a limited amount of time on it, and focus on what
you consider interesting design issues. For example, you may
be tempted to graph various values; unless you are either a
wizard Java Applet programmer or have a handy toolkit
available, resist the temptation.

Food for Thought

Looking at the rest of the data in CWS, briefly outline what
additional capabilities it could support toward having a
complete browser for an EMR. This should be just design, not
implementation. Estimate how much effort it would take you to
actually build it.

