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Statistical Learning Task


•	 Given a set of observations (evidence), 

•	 find {any/good/best} hypothesis that describes the domain


•	 and can predict the data 

•	 and, we hope, data not yet seen 

•	 ML section of course introduced various learning methods 

•	 nearest neighbors, decision (classification) trees, naive Bayes 
classifiers, perceptrons, ... 

•	 Here we introduce methods that learn (non-naive) Bayes 
networks, which can exhibit more systematic structure 



Characteristics of Learning BN Models


•	 Benefits 

•	 Handle incomplete data 

•	 Can model causal chains of relationships 

•	 Combine domain knowledge and data 

•	 Can avoid overfitting 

•	 Two main uses: 

•	 Find (best) hypothesis that accounts for a body of data 

•	 Find a probability distribution over hypotheses that permits us 
to predict/interpret future data 



An Example


•	 Surprise Candy Corp. makes two flavors of candy: cherry and lime


•	 Both flavors come in the same opaque wrapper 

• Candy is sold in large bags, which have one of the following 

distributions of flavors, but are visually indistinguishable:


•	 h1: 100% cherry 

•	 h2: 75% cherry, 25% lime 

•	 h3: 50% cherry, 50% lime 

•	 h4: 25% cherry, 75% lime 

•	 h5: 100% lime 

•	 Relative prevalence of these types of bags is (.1, .2, .4, .2, .1) 

•	 As we eat our way through a bag of candy, predict the flavor of 
the next piece; actually a probability distribution. 



Bayesian Learning


• Calculate the probability of each hypothesis given the data 

• To predict the probability distribution over an unknown quantity, X, 


• If the observations d are independent, then


• E.g., suppose the first 10 candies we taste are all lime




Learning Hypotheses

and Predicting from Them


(a) probabilities of hi after k lime candies; (b) prob. of next lime • 
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• MAP prediction: predict just from most probable hypothesis


• After 3 limes, h5 is most probable, hence we predict lime 

• Even though, by (b), it’s only 80% probable 



Observations


•	 Bayesian approach asks for prior probabilities on hypotheses! 

•	 Natural way to encode bias against complex hypotheses: make 
their prior probability very low 

•	 Choosing hMAP to maximize 

•	 is equivalent to minimizing 

•	 but from our earlier discussion of entropy as a measure of 
information, these two terms are 

•	 # of bits needed to describe the data given hypothesis


•	 # bits needed to specify the hypothesis 

•	 Thus, MAP learning chooses the hypothesis that maximizes 
compression of the data; Minimum Description Length principle 

•	 Assuming uniform priors on hypotheses makes MAP yield hML, the 
maximum likelihood hypothesis, which maximizes 



ML Learning (Simplest)


•	 Surprise Candy Corp. is taken over by new management, who 
abandon their former bagging policies, but do continue to mix 
together θ cherry and (1-θ) lime candies in large bags 

•	 Their policy is now represented by a parameter θ ∈ [0,1], and we 
have a continuous set of hypotheses, hθ 

•	 Assuming we taste N candies, of which c are cherry and l=N–c lime


• For convenience, we maximize the log likelihood


• Setting the derivative = 0, 

• Surprise! Flavor 

P(F=cherry) 

θ 

• But need Laplace correction for small data sets




ML Parameter Learning 
•	 Suppose the new SCC management decides to give a 

hint of the candy flavor by (probabilistically) choosing 
wrapper colors 

•	 Now we unwrap N candies of which 
c are cherries, with rc in red wrappers and gc in green, 

•


and l are limes, with rl in red wrappers and gl in green 

With complete data, ML learning decomposes into n 
learning problems, one for each parameter 

Flavor 

P(F=cherry) 

θ 

Wrapper 

F P(W=red|F) 

cherry θ1 

lime θ2 



    

Use BN to learn Parameters

•If we extend BN to 

continuous variables 

(essentially, replace  
 by  ) 
•Then a BN showing the 
dependence of the 
observations on the 
parameters lets us 
compute (the distributions 
over) the parameters using 
just the “normal” rules of 
Bayesian inference. 
•This is efficient if all 
observations are known 

•Need sampling 

methods if not


Parameter Independence


Flavor 

P(F=cherry) 

θ 

Wrapper 

F P(W=red|F) 

cherry θ1 

lime θ2 

θ θ1 θ2 

F W 

F W 

F W 

Sample 1 

Sample 2 

Sample 3 

Sample N 

... 
F W 



Learning Structure


•	 In general, we are trying to determine not only parameters for a 
known structure but in fact which structure is best 

•	 (or the probability of each structure, so we can average over 
them to make a prediction) 



Structure Learning


•	 Recall that a Bayes Network is fully specified by 

•	 a DAG G that gives the (in)dependencies among variables


•	 First term: usual marginal likelihood calculation 

•	 the collection of parameters θ that define the conditional 
probability tables for each of the 

•	 Then 

•	 We define the Bayesian score as 

•	 But 

•	 Second term: parameter priors 

•	 Third term: “penalty” for complexity of graph 

•	 Define a search problem over all possible graphs & parameters




         

X Y 

Searching for Models 
X Y 

•	 How many possible DAGs are there for n variables? 
       = all possible directed graphs on n vars• X Y 

•	 Not all are DAGs 

•	 To get a closer estimate, imagine that we order the variables so 
that the parents of each var come before it in the ordering.Then 

•	 there are n! possible ordering, and 

•	 If we can choose a particular ordering, say based on prior 
knowledge, then we need consider “merely”  

•	 If we restrict |Par(X)| to no more than k, consider 
models; this is actually practical 

•	 Search actions: add, delete, reverse an arc 

•	 Hill-climb on P(D|G) or on P(G|D) 

•	 All “usual” tricks in search: simulated annealing, random restart, ... 

• the j-th var can have any of the previous vars as a parent 

models 



Caution about Hidden Variables 

•	 Suppose you are given a dataset containing data on patients’ 
smoking, diet, exercise, chest pain, fatigue, and shortness of breath 

•	 You would probably learn a model like the one below left 

•	 If you can hypothesize a “hidden” variable (not in the data set), 
e.g., heart disease, the learned network might be much simpler, 
such as the one below right 

•	 But, there are potentially infinitely many such variables 
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