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Statistical Learning Task

® Given a set of observations (evidence),
® find {any/good/best} hypothesis that describes the domain
® and can predict the data
® and, we hope, data not yet seen
® ML section of course introduced various learning methods

® nearest neighbors, decision (classification) trees, naive Bayes
classifiers, perceptrons, ...

® Here we introduce methods that learn (non-naive) Bayes
networks, which can exhibit more systematic structure



Characteristics of Learning BN Models

® Benefits
® Handle incomplete data
® (Can model causal chains of relationships
® Combine domain knowledge and data
® Can avoid overfitting

® [wo main uses:
® Find (best) hypothesis that accounts for a body of data

® Find a probability distribution over hypotheses that permits us
to predict/interpret future data



An Example

Surprise Candy Corp. makes two flavors of candy: cherry and lime
Both flavors come in the same opaque wrapper

Candy is sold in large bags, which have one of the following
distributions of flavors, but are visually indistinguishable:

ni: 100% cherry
N2: 75% cherry, 25% lime
h3: 50% cherry, 50% lime

n4: 25% cherry, 75% lime
ns: 100% lime
Relative prevalence of these types of bags is (.1, .2, .4,.2,.1)

As we eat our way through a bag of candy, predict the flavor of
the next piece; actually a probability distribution.



Bayesian Learning

Calculate the probability of each hypothesis given the data

P(h;|d) = aP(d]h;)P(h;)

To predict the probability distribution over an unknown quantity, X,
P(X|d) = >_; P(X|d, hi)P(h|d) = )_; P(X|h;)P(hi|d)

If the observations d are independent, then

P(dlh;) = 11; P(d;|hi)

E.g., suppose the first 10 candies we taste are all lime
P(d|hs) = 0.51° ~ 0.001



Learning Hypotheses
and Predicting from Them

® (a) probabilities of h; after k lime candies; (b) prob. of next lime
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® MAP prediction: predict just from most probable hypothesis
® After 3 limes, hs is most probable, hence we predict lime
® Even though, by (b), it’s only 80% probable



Observations

® Bayesian approach asks for prior probabilities on hypotheses!
® Natural way to encode bias against complex hypotheses: make
their prior probability very low
® Choosing hmap to maximize P(h;|d) = aP(d|h;)P(h;)
® s equivalent to minimizing —log P(d|h;) — log P(h;)
® but from our earlier discussion of entropy as a measure of
information, these two terms are

® # of bits needed to describe the data given hypothesis
® # bits needed to specify the hypothesis

® Thus, MAP learning chooses the hypothesis that maximizes
compression of the data; Minimum Description Length principle

® Assuming uniform priors on hypotheses makes MAP yield hm, the
maximum likelihood hypothesis, which maximizes P(h;|d) = aP(d|h;)



ML Learning (Simplest)

Surprise Candy Corp. is taken over by new management, who
abandon their former bagging policies, but do continue to mix
together O cherry and (1-0) lime candies in large bags

Their policy is now represented by a parameter O € [0,1], and we
have a continuous set of hypotheses, hg

Assuming we taste N candies, of which c are cherry and I=N—c lime

P(dlhg) =[5, P(d;|he) = 6° - (1 — 0)!

For convenience, we maximize the log likelihood

L(d|hg) = log P(d|hg) = ", log P(d;|hg) = clog  + llog(1 — 0)

Setting the derivative = 0,

dL(dlhe) _ ¢ 1 __
w  —g - 15=0 =

Surprise!

But need Laplace correction for small data sets

P(F=cherry)

0




ML Parameter Learning

Suppose the new SCC management decides to give a
hint of the candy flavor by (probabilistically) choosing

wrapper colors

P(F = cherry, W = green|hg ¢, 0, )
= P(F = cherry|hg g, 0,) P(W = green|F = cherry, hg ¢, 0,)
= 0-(1—-01)

Now we unwrap N candies of which

c are cherries, with rc in red wrappers and gc in green,
and | are limes, with r; in red wrappers and g in green

P(F=cherry)
0

P(dlhog,0.) = 0°(1—0)" 07 (1—01)% 03 (1 — 02)”
L = |clogh+llog(l—0)]

4+ [Tc log 01 + g, log(l — 91)] F | P(W=red|F)
=re

+ [r;log 0 + gy log(1 — 65)] — -
|

0=c/(c+l), Oi=r/(rc+gc), O2=r/(ri+g) lime 0;

With complete data, ML learning decomposes into n
learning problems, one for each parameter



Use BN to learn Parameters

elf we extend BN to
continuous variables

(essentially, replacez by / )
*Then a BN showing the Parameter Independence
dependence of the
observations on the
parameters lets us

compute (the distributions

over) the parameters using  >mple | P(F=cherry)

just the “normal” rules of 0

Bayesian inference. Sample 2

*This is efficient if all

observations are known Sample 3 F o [P(W=red|F)
*Need sampling cherry| 6,

methods if not lime 0,
Sample N @ @



Learning Structure

® |n general, we are trying to determine not only parameters for a
known structure but in fact which structure is best

® (or the probability of each structure, so we can average over
them to make a prediction)



Structure Learning

Recall that a Bayes Network is fully specified by
® a DAG G that gives the (in)dependencies among variables

® the collection of parameters O that define the conditional

probability tables for each of the P(z;|Par(X;))
P(D|G)P(G)
Then P(G|D) = P(D) x P(D|G)P(G)
We define the Bayesian score as log P(D|G) + log P(G)
But P(D’G) = / P(D‘@G,G)P(eg|G)P(G)d9G

. < R .
® First term: ustial marginal likelihood calculation

® Second term: parameter priors
® Third term: “penalty” for complexity of graph
Define a search problem over all possible graphs & parameters



OO

Searching for Models CO—()

How many possible DAGs are there for n variables!?
o <3 =g, possible directed graphs on n vars @‘76()
® Not all are DAGs

To get a closer estimate, imagine that we order the variables so
that the parents of each var come before it in the ordering. Then

® there are n! possible ordering, and
® the j-th var can have any of the previous vars as a parent
n! ﬁ 2i=1 = p). 92X (=1 = (! . 27)

1=1
f we can choose a particular ordering, say based on prior
knowledge, then we need consider “merely” O(2" ) models

f we restrict |Par(X)| to no more than k, consider < Z ( )
models; this is actually practical i=1

Search actions: add, delete, reverse an arc
Hill-climb on P(D|G) or on P(G|D)
All “usual” tricks in search: simulated annealing, random restart, ...



Caution about Hidden Variables

Suppose you are given a dataset containing data on patients’
smoking, diet, exercise, chest pain, fatigue, and shortness of breath

You would probably learn a model like the one below left

If you can hypothesize a “hidden” variable (not in the data set),
e.g., heart disease, the learned network might be much simpler,
such as the one below right

But, there are potentially infinitely many such variables
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Re-Learning the ALARM

Network from 10,000 Samples

b) Starting Network Complete independence
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