6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

6.034 Notes: Section 2.6

Slide2.6.1 States vs Paths

In our discussion of uniform-cost search and A* so far, we have ignored the issue of revisiting
states. We indicated that we could not use a Visited list and still preserve optimality, but can we

use something else that will keep the worst-case cost of a search proportional to the number of A
statesin a graph rather than to the number of non-looping paths? The answer is yes. We will start

looking at uniform-cost search, where the extension is straightforward and then tackle A*, where it ‘

isnot.

s of

Slide2.6.2
Dynamic Programming Optimality Principle
and the Expanded list What will come to our rescue is the so-called "Dynamic Programming Optimality Principle”, which
Given that path length is additive, the shortest path from S to G via a state X is isfairly intuitivein thl,s context. Namely, the shortest path from the start to the goal that goes
made up of the shortest path from 5 to X and the shortest path from X to G. through some state X is made up of the shortest path to X followed by the shortest path from X to G.
This is the "dynamic programming optim ality principle”. Thisis easy to prove by contradiction, but we won't do it here.

¥,
Y,

wespmiEs

Slide2.6.3
Dynamic Programming Optimality Principle

Given this, we know that there is no reason to compute any path except the shortest path to any and the Expanded list

state, Smf:e that '_Sthe only path that C_an ever be part of the answer. So, if _We ever find asecond path + Given that path length is additive, the shortest path from S to G via a state X is
to apreviously visited state, we can discard the longer one. So, when adding nodes to Q, check made up of the shortest path from S to X and the shortast path from X to G.
whether another node with the same state is aready in Q and keep only the one with shorter path This is the "dynamic programming optimality principle”.

length. + This means that we only need to keep the single hest path from S to any state

X; if we find a new path to a state already in Q, discard the longer one.

e of

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide2.6.4
Dynamic Programming Optimality Principle
and the Expanded list We have observed that uniform-cost search pulls nodes off Q (expands them) in order of their actual
+ Given that path length is additive, the shortest path from S to G via a state X is path length. So, the first time we expand a r_]ode whose Stat? is X, that node repr_emn_s the shortest
made up of the shortest path from 5 to X and the shertest path from X to G. path to that state. Any subsequent path we find to that state is awaste of effort, since it cannot have
This is the "dynamic programming optimality principle”. a shorter path.
+ This means that we only need to keep the single best path from S to any state
X; if we find a new path to a state already in Q, discard the longer one.
+ Note that the first time UC pulls a search node off of Q whose state is X, this
path is the shortest path from S te X. This follows from the fact that UC
expands nodes in order of actual path length.
Ap = Spring 02+ d. 4
Slide2.6.5
Dynamic Programming Optimality Principle
So, let's remember the states that we have expanded already, in a"list" (or, better, a hash table) that and the Expanded list
v_vewHI call t,he EXpmded list. If wetry to gxpand anode Whose state s alreajy On the Expanded = Given that path length is additive, the shortest path from S to G via a state X is
list, we can_s_mply dlsc_ard that palh. We will r_efer to algorithmsthat do this, that is, no expanded made up of the shertest path from 5 to X and the shortest path from X to G.
stateisre-visited, asusing astrict Expanded list. This is the "dynamic programming eptimality principle".
. . . . L . . + This means that we only need to keep the single best path from S to any state
NOte that when using ?St”Ct EXPaf_WdEd list, any visited state will either be'm Qor n 'the Expanded X; if we find a new path to a state already in Q, discard the longer one.
list. So, when V\{e COFI.S|dET a_potentlallnaN node we can check whether (g) its state is ”,1 Q inwhich + Note that the first time UC pulls a search node off of Q whose state is X, this
casg V_Ve. accept it or dI.S:al'd. it depending on the Ilength 9f the new path versus the previous b'j:"s_t' or path is the shortest path from S te X. This follows from the fact that UC
(b) itisin Expanded, in which case we always discard it. If the node's state has never been visited, expands nodes in order of actual path length.
we add the node to Q. + So, once expand one path to state X, we don’t need to consider (extend) any
other paths to X. We can keep a list of these states, call it Expanded. If the
state of the search node we pull off of Q is inthe Expanded list, we discard the
node. When we use the Expanded list this way, we call it “strict”.
tp - Sping 02+ § (E
Slide 2.6.6
Dynamic Programming Optimality Principle
and the Expanded list The correctness of uniform-cost search does not depend on using an expanded list or even on
+ Given that path length is additive, the shortest path from S to G via a state Xis dlgcardlng longer pathSt,o the S_ame Staie_ (t_he Q will just be '0”,9‘?' than nww' We Can use UC
made up of the shortest path from § to X and the shortest path from X to G. with or without these optimizations and it is still correct. Exploiting the optimality principle by
This is the "dynamic programming optimality principle". discarding longer paths to statesin Q and not re-visiting expanded states can, however, make UC

+ This means that we only need to keep the single best path from S to any state much more efficient for densely connected graphs.

X; if we find a new path to a state already in Q, discard the longer one.

+ Note that the first time UC pulls a search node off of Q whose state is X, this
path is the shortest path from Sto X. This follows from the fact that UC
expands nodes in order of actual path length.

+ So, once we expand one path to state X, we don't need to consider (extend)
any other paths to X. We can keep a list of these states, call it Expanded. If
the state of the search node we pull off of Q is in the Expanded list, we discard
the node. When we use the Expanded list this way, we call it “strict”.

+ Note that UC without this is still comect, but inefficient for searching graphs.

e

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide2.6.7

So, now, we need to modify our simple algorithm to implement uniform-cost search to take
advantage of the Optimality Principle. We start with our familiar algorithm...

Simple Optimal Search Algorithm
t

Uniform Cost + Strict Expand i

IS

Aaearch nods 13 a path from some state X to the startstate, e.g, (KBAS)
The state of a search node is the most recent state of the path, e.g. X
Lel Qbe alistofsearchnodes, eg (XBAS) (CBAS))

Let S be the start state

1. Initialize @ with search node (S) as only entry; set Expanded = ()

2. IfQis empty, fail. Else, pick least cost search node N from Q

3. If state{N) is a goal, return N (we've reached the goal)

4. (Otherwise) Remove N from Q.

5. if state(N) in Expanded, go to step 2, otherwise add state(N) to Expanded.

6. Find all the children of state{N) (fot in Expanded) and create all the one-
step extensions of N to each descendant.

7. Add all the extended paths te Q; if descendant state already in Q, keep only
shorter path to the state in Q.

8. Gotostep2.

v
Slide2.6.9

Let's step through the operation of this algorithm on our usual example. We start with anode for S,

having a 0-length path, as usual.

Simple Optimal Search Algorithm

Uniform Cost

A search node is a path from some state X {o the start state, e.g, ((BAS)
The state of a search node is the most recent state of the path, e g X

Let Qbe alistofsearchnodes, eg (KBAS) (CBAS))

Lel S be the startstate

Initialize Q with search nede (S) as only entry;
If Q is empty, fail. Else, pick least cost search node N from Q
If state(N) is a goal, return N (we've reached the goal)

{Otherwise) Remove N from Q.

o R L R L

Find all the children of state{N) and create all the one-step extensions of N
to each descendant.

7. Add all the extended paths to Q;
8. Gotostep2.

et

Slide2.6.8

... and modify it. First weinitiaize the Expanded list in step 1. Since thisis uniform-cost search, the
algorithm picks the best element of Q, based on path length, in step 2. Then, in step 5, we check
whether the state of the new node is on the Expanded list and if so, we discard it. Otherwise, we add
the state of the new node to the Expanded list. In step 6, we avoid visiting nodes that are Expanded
since that would be awaste of time. In step 7, we check whether thereisanodein Q corresponding
to each newly visited state, if so, we keep only the shorter path to that state.

Uniform Cost {with strict expanded list)

Pick best (by path length) slement of Q; Add path exdensions arywhere in 4

[s]

Expanded

Added paths in blue; underlined paths are chosen for extension.
WWe show the paths in reversed order; the node's state is the first entry.

Wi

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide2.6.10
Uniform Cost (with strict expanded list)

)) We expand the S node, add its descendants to Q and add the state S to the Expanded list.
Pick best (by path length) element of Q; Add path extensions anpwhere in Q

D

Expanded

1 |08
2 [PASIGBY s

§

Added paths in blue; underlined paths are chosen for extension.
We show the paths in reversed order; the node's state is the first entry.

oot g

Slide2.6.11

Uniform Cost {with strict expanded list)
We then pick the node at A to expand since it has the shortest length among the nodesin Q. We get
the two extensions of the A node, which gives us pathsto C and D. Neither of the two new nodes

Pick best (by path length) element of Q; Add path extensions anywhere in Q
statesis already present in Q or in Expanded so we add them both to Q. We also add A to the

Expanded

Expanded list. 1 (C;—s) xpande
12 [easi5B9 s
3 |(4CASIEDASIBBS) SA

Added paths in blue;_underlined paths are chosen for extension.
We show the paths in reversed order; the node's state is the first entry.

tp~ Spring 02+ 11 4
Slide2.6.12
Uniform Cost {with strict expanded list)
Fick best (b paih lenglh) le merl of G; Add palh extensions amyher in Q We pick the node at C to expand, but C has no descendants. So, we add C to Expanded but there are
; no new nodesto add to Q.

Q Expanded <>
1 oS g, A
2 [RAS)5BS 5 ;
3 |4CAS)EDAS)(EBS) S,A QD 4
4 |6DAS)BBS) SAC !

4

Added paths in blue; underlined paths are chosen for extension.
We show the paths in reversed erder; the node's state is the first entry.

sz

Slide2.6.13

Uniform Cost {with strict expanded list)
We select the node with the shortest path in Q, which is the node at B with path length 5 and
generate the new descendant nodes, one to D and one to G. Note that at this point we have generated

Pick best (by path length) element of Q; Add path extensions anywhere in Q
two pathsto D - (SA D) and (S B D) both with length 6. We're free to keep either one but we do not

) - i Expanded
need both. We will choose to discard the new node and keep the one aready in Q. 1 ;:_s) XRance
|2 |2asi5B9 s
3 |[ACASIEDASIBBS) S,A
4 |6DAS)BEBS) SALC
5 |EDBSU0GESEDAS) S,ACB

Added paths in blue; underlined paths are chosen for extension.
We show the paths in reversed erder; the node's state is the first entry.

sz

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide2.6.14
Uniform Cost (with strict expanded list)
The node corresponding to the (S A D) path is now the shortest path, so we expand it and generate
two descendants, one going to C and one going to G. The new C node can be discarded since C ison
the Expanded list. The new G node shares its state with a node aready on Q, but it correspondsto a

Pick best (by path length) element of Q; Add path extensions anpwhere in Q

T (?1_31 Sinandsd shortler'path - so we discard the older node in favor of the new one. So, at this point, Q only has one
remaining node.

2 |R2AS)&BSY S

3 |[4CASIEDASIBGBS) S,A

4 |GDAS)(EBS) S,ALC

5 |GDBHI0GBESEDAS) S,ACB

8

(@GDAS) (QLBAS) (10685) |gACED

Added paths in blue; underlined paths are chosen for extension.
We show the paths in reversed order; the node's state is the first entry.

oot g

Slide2.6.15

Uniform Cost {with strict expanded list)
This node corresponds to the optimal path that is returned. It is easy to show that the use of an

Expanded list, aswell as keeping only the shortest path to any statein O, preserve the optimality Pick best (by path length) element of Q; Add path extensions anywhere in Q
guarantee of un*iform—cost search and can lead to substantial performance improvements. Will this 2 Expanded
hold true for A* aswell? 1 |as) g
2 |(2AS5)(5BS) S ;
3 |MCASIGDAS)BBS) SA f
4 |(6DAS)BEBS) SAC
5 |EDBSHI0GBS)EDAS) SACB
|6 [(BGDAS){CH#S) (10688) |5ACED

Added paths in blue;_underlined paths are chosen for extension.
We show the paths in reversed order; the node's state is the first entry.

B ts o

Slide 2.6.16
A* (without expanded list)

« Let g{N) be the path cost of n, where n is a search tree node, i.e. a partial path.
- Let h{N) be h{state(N}), the heuristic estimate of the remaining path length to the

First, let'sreview A* and the notation that we have been using. The important notation to remember
isthat the function g represents actual path length along a partia path to a node's state. The function

gaal from state(N] h represents the heuristic value at anode's state and f is the total estimated path length (to a goal)
+ Let f{N) = g(M) + histate{N) be the total estimated path cost of a node, i.e. the and is the sum of the actual length (g) and the heuristic estimate (h). A* picks the node with the
estimate of a path to a goal that starts with the path given by N. smallest value of f to expand.

+ A" picks the node with lowest f value to expand

sz

Slide 2.6.17

A* (without expanded list)

A*, without using an Expanded list or discarding nodes in Q but using an admissible heuristic -- that) . .

is, one that underestimates the distance to the goal -- is guaranteed to find optimal paths. + Letg[N) bs the path cost of niwhareiiis ngearch tree nod, Le. a partinl path.

« Let hiN) be h{state(N)), the heuristic estimate of the remaining path length to the
goal from state(N).

+ Let f{N) = g{N) + h{state{N)) be the total estimated path cost of a node, i.e. the
estimate of a path to a goal that starts with the path given by N.

+ A" picks the node with lowest f value to expand

+ A* {without expanded list) and with admissible heuristic is guaranteed to find
optimal paths - those with smallest path cost.

sz

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide2.6.18
A* and the strict Expanded List
The stri i . . If we use the search algorithm we used for uniform-cost search with a strict Expanded list for A*,
+ The strict Expanded list (also known as a Closed list) is commonly used in L . - L
implementations of A* but, to guarantee finding optimal paths, this addi nginan admissible heuristic to the path Iength, then we can no Ionger guarantee that it will
implementation requires a stronger condition for a heuristic than simply always find the optimal path. We need a stronger condition on the heuristics used than being an
heing an underestimate. underestimate

oot gf

Slide2.6.19
A* and the strict Expanded List
Here's an example that illustrates this point. The exceedingly optimistic heuristic estimate at B S TTHB FECE BB ISl b 8 S LB I A SR

"lures’ the A* algorithm down the wrong path. implementations of A* but, to guarantee finding optimal paths, this

imple mentation requires a stronger condition for a heuristic than simply
heing an underestimate.

Here’s a counterexample: The heuristic values listed below are all
underestimates but A" using an Expanded list will not find the optimal path.
The misleading estimate at B throws the algorithm off, C is expanded before
the optimal path to it is found.

Heuristic Values
A=100 C=90 S=0
B=1 G=0

Bty g

. . Slide2.6.20
A* and the strict Expanded List

THe S ' e . Y ou can see the operation of A* in detail here, confirming that it finds the incorrect path. The

+ The strict Expanded list (also known as a Closed list) is commonly used in . . . > X i
implementations of A* but, to guarantee finding optimal paths, this correct partial path via A is blocked when the path to C viaB is expanded. In step 4, when A is

implementation requires a stronger condition for a heuristic than simply finally expanded, the new path to C is not put on Q, because C has already been expanded
heing an underestimate. ! ! :
Here’s a counterexample: The heuristic values listed below are all
underestimates but A" using an Expanded list will not find the optimal path.
The misleading estimate at B throws the algorithm off, C is expanded before
the optimal path to it is found.

Q Expanded
1108)
2|{3BS){101 AS) S
3/(94CBS) (101 AS) B.S
4 (1MAS)(104GCBS)|C,B,S Heuristic Values
5 |(104 GCB 5)] AC,B,S A=100 C=90 S=0
B=1 G=0

Added paths in blue; underlined paths are chosen for extension.
We show the paths in reversed order; the node's state is the first entry.

- Spring 02+ 20 4
Slide2.6.21
Consistency

- _— . .
.The stronger cor_1d|t| onsona heurISt!C that e.nables usto lmpl ement A* just the Same way we + To enable implementing A" using the strict Expanded list, H needs to satisfy
implemented uniform-cost search with a strict Expanded list are known as the consistency the following consistency (also known as monotonicity) conditions.
conditions. They are also called monotonicity conditions by others. The first condition is simple, + his}) =0, if n; is a goal
namely that goal states have a heuristic estimate of zero, which we have already been assuming. The + his;)- h(s;) - c(s.)) , for n; a child of ny

next condition is the critical one. It indicates that the difference in the heuristic estimate between
one state and its descendant must be less than or equal to the actual path cost on the edge connecting
them.

wesmiza

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide2.6.22
Consistency
- To enable imple menting A* using the strict Expanded list, H needs to satisfy The beSt Wa.y of visualizing the consistency condition |sas_ a trlanglemequa“ty , that is, one side of
the following consistency (alse known as monotonicity) cenditions. thetriangle isless than or equal the sum of the other two sides, as seen on the diagram here.
« his;) =0, if n; is a goal
+ his;) - his) - e(s,5;) , for n; a child of ny
+ That is, the heuristic cost in moving from one entry to the next cannot
decrease by more than the arc cost between the states. This is a kind of

triangle inequality. This condition is a highly desirable property of a heuristic
function and often simply assumed (more on this later).

e gf

Slide 2.6.23
Consistency Violation
Here is asimple example of a (gross) violation of consistency. If you believe goal is 100 units from
n;, then moving 10 units to n; should not bring you to adistance of 10 units from the goal. These

heuristic estimates are not consistent.

+ A simple example of a violation of
consistency.

his;) - his;) - els,3)

In example, 100-10 > 10

If you believe goal is 100 units from
n;, then moving 10 units to n;
should not bring you to a distance
of 10 units frem the goal.

n his;)=10

c(s;5)=10]\'_"‘—goal

z his)=100

Bz o

Slide2.6.24
A* (without expanded list)
, . . | want to stress that consistency of the heuristic is only necessary for optimality when we want to
Let g{N) be the path cost of n, where n is a search tree node, i.e. a partial path. discard paths from consideration, for example, because a state has already been expanded.
Let h{N) be h{state(N}}, the heuristic estimate of the remaining path length to the Otherwise, plain A* without usir;g an expandéd only requires only that the heurristic be admissible to
goal from state{N). P .

Let fiN) = g{N) + h{state(N}) be the total estimated path cost of a node, i.e. the guarantee optimality.

estimate of a path to a goal that starts with the path given by n.
A picks the node with lowest f value to expand

A" {without expanded list} and with admissible heuristic is guaranteed to find
optimal paths - those with the smallest path cost.

This is true even if heuristic is NOT consistent.

wespmizea

Slide2.6.25
A* (without expanded list)
Thisillustrates that A* without an Expanded list has no trouble coping with the example we saw
earlier that showed the pitfalls of using a strict Expanded list. This heuristic is not consistent but it is Note that heunistic is admissible bul not consistent
an underestimate and that is all that is needed for A* without an Expanded list to guarantee

optimality.
Q
1]808)
2 |3BS) (101 AS)
3 [[4CBS)101AS)
4 |01 AS)104GCBS)
5|92CAS (104GCBY) Heuristic Values
§ [A02GCAS|1046CES) A=100 C=30 S=50

B=1 G=0
Added paths in blue; underlined paths are chosen for extension.

ez

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 2.6.26
A* (with strict expanded list)
_ ! The extension of A* to use a strict expanded list isjust like the extension to uniform-cost search. In
» AtlikgUnltoom Goslsearch, N . fact, it is the identical algorithm except that it usesf values instead of g values. But, we stress that
+ When a node N is expanded, if state(N) is in expanded list, discard N, else add for this algorithm to guarantee finding optimal paths, the heuristic must be consistent
state(N) to expanded list. .
+ If some node in Q has the same state as some descendant of N, keep only node
with smaller f, which will also correspond to smaller g.

- For A* (with strict expanded list) to be guaranteed to find the optimal path, the
heuristic must be consistent.

oo gf

Slide2.6.27

A* (with strict expanded list)
I1f we modify the heuristic in the example we have been considering so that it is consistent, as we

have done here by increasing the value of h(B), then A* (even when using a strict Expanded list) Mote that this heuristic is admissible and consistent
will work.
Q Expanded
1 ©05)
2|90 B) (101 A S) s
3101 AS)(104CBS) AS
4 102C AS) 104 EES) |CAS
5 |[102 GCAS) | GCAS Heuristic Values
A=100 C=100 $=90
B-88 G=0

Added paths in blue; underlined paths are choesen for extension.

Bzt

Slide2.6.28
Dealing with inconsistent heuristic
+ What can we do if we have an inconsistent heuristic but we still want optimal People sometimes simply assume that the consistency condition holds and implement A* with
paths? P strict Expanded list (also called a Closed list) in the simple way we have shown before. But, thisis
not the only (or best) option. Later we will see that A* can be adapted to retain optimality in spite of
aheuristic that is not consistent - there will be a performance price to be paid however.

wespmiees

Slide2.6.29
Dealing with inconsistent heuristic
The key step needed to enable A* to cope with inconsistent heuristics is to detect when an overly . . . o . .
optimistic heuristic estimate has caused us to expand a node prematurely, that is, before the shortest ’ m;tsf,a" v doifwehaveian:inconsistent hauristic but e stil want optimal
path to that node has been found. Thisis basically analogous to what we have been doing when we . Modifv A* so that it detects and ts when istency has led us astray:
. . . . N Yy S0 that It detects and corrects when Inconsistency Y
find a shorter path to a state already in Q, except we need to do it to states in the Expanded list. In
this modified algorithm, the use of the Expanded list is not strict: we allow re-visiting states on the
Expanded list.

To implement this, we will keep in the Expanded list not just the expanded states but the actual node
that was expanded. In particular, this records the actual path length at the time of expansion

wesmizs

Dealing with inconsistent heuristic

+ What can we do if we have an inconsistent heuristic but we still want optimal
paths?

+ Modify A" so that it detects and corrects when inconsistency has led us astray:

+ Assume we are adding node, to Q and node, is present in Expanded list with
node,.state = node,.state.

oo gf

Slide2.6.31

With astrict Expanded list, we simply discard node;; we do not add it to Q.

Dealing with inconsistent heuristic

+ What can we do if we have an inconsistent heuristic but we still want optimal
paths?

- Modify A* so that it detects and corrects when inconsistency has led us astray:
+ Assume we are adding node, to Q and nede; is present in Expanded list with
node,.state = node;.state.
+ Strict-
+ donotadd node, to Q
+ Non-Strict Expanded list -
« If node,.path_length < node,.path_length, then
- Delete node, from Expanded list
— Add node, to Q

ez

Slide2.6.33

Let's think abit about the worst case complexity of A*, in terms of the number of nodes expanded

(or visited).

Aswe've mentioned before, it is customary in Al to think of search complexity in terms of some
"depth" parameter of the domain such as the number of stepsin aplan of action or the number of

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 2.6.30

Let's consider in detail the operation of the Expanded list if we want to handle inconsistent heuristics
while guaranteeing optimal paths.

Assume that we are adding anode, call it node;, to Q when using an Expanded list. So, we check to
seeif anode with the same state is present in the Expanded list and we find node, which matches.

Dealing with inconsistent heuristic

+ What can we do if we have an inconsistent heuristic but we still want optimal
paths?

» Modify A* so that it detects and corrects when inconsistency has led us astray:
+ Assume we are adding node, to Q and node, is present in Expanded list with
node,.state = node,.state.
« Strict-
+ donotadd node, to Q

Bz o

Slide 2.6.32

With anon-strict Expanded list, the situation is a bit more complicated. We want to make sure that
node; has not found abetter path to the state than node,. If abetter path has been found, we remove

the old node from Expanded (since it does not represent the optimal path) and add the new node to
Q.

Worst Case Complexity

+ The number of states in the search space may e exponential in some “depth”
parameter, e.g. number of actions in a plan, number of moves in a game.

moves in agame. The state space for such domains (planning or game playing) grows exponentially
in the "depth", that is, because at each depth level there is some branching factor (e.g., the possible
actions) and so the number of states grows exponentially with the depth.

We could equally well speak instead of the number of states as a fixed parameter, cal it N, and state
our complexity in terms of N. We just have to keep in mind then that in many applications, N grows
exponentially with respect to the depth parameter.

ez

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide2.6.34
Worst Case Complexity
In the worst case, when the heuristics are not very useful or the nodes are arranged in the worst
possible way, all the search methods may end up having to visit or expand all of the states (up to
All the searches, with or without visited or expanded lists, may have to visit {or some depth). In practice, we should be able to avoid this worst case but in many cases one comes
expand) each state in the worst case. pretty close.

So, all searches will have worst case complexities that are at least proportional
to the number of states and therefore exponential in the “depth” parameter.

The number of states in the search space may be exponential in some “depth”
parameter, e.g. number of actions in a plan, number of moves in a game.

This is the bottom-line irreducible worst case cost of systematic searches.

oo gf

Slide 2.6.35
Worst Case Complexity
The problem is that if we have no memory of what states we've visited or expanded, then the worst
case for adensely connected graph can be much, much worse than this. One may end up doing
exponentially more work.

The number of states in the search space may be exponential in some “depth”
parameter, e.g. number of actions in a plan, number of moves in a game.

All the searches, with or without visited or expanded lists, may have to visit {or
expand) each state in the worst case.

So, all searches will have worst case complexities that are at least proportional
to the number of states and therefore exponential in the “depth” parameter.

This is the bottom-line irreducible worst case cost of systematic searches.

Without me mory of what states have been visited {expanded), searches can do
{much) worse than visit every state.

B o

Slide 2.6.36
Worst Case Complexity
We've seen this example before. It shows that a state space with N states can generate a search tree

« A state space with N states may give rise to a search tree that has a number of with 2°N nodes.

nodes that is exponential in N, as in this example.

sz

Slide 2.6.37
Worst Case Complexity
A search agorithm that does not keep a visited or expanded list will do exponentially more work
that necessary. On the other hand, if we use a strict expanded list, we will never expand more than
the (unavoidable) N states.

+ A state space with N states may give rise to a search tree that has a number of
nodes that is exponential in N, as in this example.

+ Searches without a visited {expanded) list may, in the worst case, visit (expand)
every node in the search tree.

+ Searches with strict visited (expanded lists) will visit {expand) each state only
once.

sz

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Optimality & Worst Case Complexity
Here we summarize the optimality and complexity of the various algorithms we have been

examining.
Algorithm Heuristic Expanded Optimality Worst Case #
List Guaranteed? | Expansions

Uniform Cost | None Strict Yes N

A* Admissible None Yes =N

Ar Consistent Strict Yes N

A* Admissible Strict No N

A* Admissible Non Strict Yes =N

N is number of states in graph

oo gf

6.034 Notes: Section 2.7

Slide2.7.1 Optional Topics

This set of slides goes into more detail on some of the topics we have covered in this chapter. » These slides go into more depth on a variety of topics we have touched
upan:

= Optimality of A*

* Impact of a hetter heuristic on A*

* Why does censistency guarantee optimal paths for A* with strict
expanded list

= Algorithmic issues for A*

* These are not required and are provided for thase interested in pursuing
these topics.

st

Slide2.7.2
Optimality of A*

First topic:
+ Assume A* has expanded a path to goal node G

Let's go through a quick proof that A* actually finds the optimal path. Start by assuming that A* has
selected anode G.

wespmiees

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide2.7.3
Optimality of A*
Then, we know from the operation of A* that it has expanded all nodes N whose cost f(N) is strictly
less than the cost of G. We also know that since the heuristic is admissible, its value at agoal node * Assume A" has expanded a path to goal node G
must be 0 and thus, f(G) = g(G)+h(G) = g(G). Therefore, every unexpanded node N must have f(N) * Then, A" has expanded all nodes N where f(N) < f(G). Since h is
greater or equal to the actual path length to G. admissible, RG) = g(G). Se, every unexpanded node has f{N) = g{G).
- Sping 02 - (E
Slide2.7.4
Optimality of A*
Since h is admissible, we know that any path through an unexpanded node N that reaches some
+ Assume A® has expanded a path to goal node G

dternate goal node G' must have atotal cost estimate f(N) that is not larger than the actual cost to
* Then, A™ has expanded all nodes N where f{N) < f(G). Since his G, that is, g(G).

admissible, §G) = g(G). Se, every unexpanded nade has f{N) = g{G).
' Since h is admissible, we know that any path through N that reaches a
goal node G has value g(GY) = f(N)

tesmsd

Slide2.7.5

Optimality of A*

Combining these two statements we see that the path length to any other goal node G' must be "

greater or equal to the path length of the goal node A* found, that is, G. * Assume A" has expanded a path to goal node G

+ Then, A* has expanded all nodes N where f{N) < f{(G). Sincehis
admissible, f{G) = g{G). So, every unexpanded node has f{N) = g(G).

+ Since h is admissible, we know that any path through N that reaches a
goal node G? has value g{G% = f(N)

+ So, for every unexpanded nede N, we have g{G") 2 f(N} 2 g(G). That
is, any goal reachable from these nedes has a path that is at least as
long as the ane we found.

wespmiees

Slide2.7.6
Impact of better heuristic
. Next topic:
* Let h* be the “perfect’ heuristic — retums actual path cast to goal.
We can also show that a better heuristic in general leads to improved performance of A* (or at least
no decrease). By performance, we mean number of nodes expanded. In general, there is atradeoff in
how much effort we do to compute a better heuristic and the improvement in the search time due to
reduced number of expansions.

Let's postulate a "perfect” heuristic which computes the actual optimal path length to agoal. Call
this heuristic h*.

wespmiees g

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide2.7.7
Impact of better heuristic
Then, assume we have a heuristic hy that is always numerically less than another heuristic hy, which

is (by admissibility) less than or equal to h* ' Let h* be the “perfect” heuristic — retums actual path cost te goal.

* If hy{N) < hy{N} < h*{N) for all non-goal nedes, then b, is a better
heuristic than h,

p - Spiing 02- 7 (E
Slide2.7.8
Impact of better heuristic
. The key observation isthat if we have two versions of A*, one using h; and the other using h,, then
1 Let h* be the “perfect” heuristic — retums actual path cost te goal. every node exnanded by the second one i also expanded by the first
* I h{N) < hy{N) < h"{N) for all norr-goal nodes, then h, is a beter y P Y P v :
, ;‘:‘:‘Shc th:n i dA” h th d dedby A" s al Thisfollows from the observation we have made earlier that at agoal, the heuristic estimates all
exp;nl:iseedsh; :[‘ #umesh;thenweven nadesxpanded by b ir-allso agree (they are dl 0) and so we know that both versions will expands all nodes whose value of f is
d
+ £(G)=1,(G)=g(G), 50 both A and A" expand allnodes withF< gggy | o 1N the actual path length of G.
* FifN)=giN)+,(N) < £,(N)=g(N)+h,{N) = g{G) Now, every node expanded by A*,, will have a path cost no greater than the actual cost to the goal
G. Such anode will have asmaller cost using hy and so it will definitely be expanded by A*, as
well.
A~ Spiing 02+ & 4
Slide2.7.9

Impact of better heuristic
So, A* | expands at least as many nodes as A*,. We say that A*, is better informed than A*; to

refer to this situation. * Let h* be the “perfect” heuristic — retums actual path cost te goal.

* If hyfN) < hy{N) < h*(N) for all non-goal nodes, then h, is a better
heuristic than h,
* IFA" uses h,, and A," uses h,, then every node expanded by A" is also
expanded by A*
* F,{G)=F.(G)=g(G), so both A," and A," expand all nodes with f < g{G})
* FiN)=giN)+, (N) < F.{N)=g(N)+h.(N) = g{G)
* Thatis, A" expands at least as many nodes as A,* and we say that A,
is hetter informed than A"

wespmies

Slide2.7.10
Impact of better heuristic
" . . Since uniform-cost search issimply A* with aheuristic of 0, we can say that A* is generally better
Leth" be the “perfect” heuristic - refums actual path cast to goal. informed than UC and we expect it to expand fewer nodes. But, A* will expend additional effort

:hW(wf(t?f(N)hs h*(N] for all nen-goal nedes, then h, is a better computing the heuristic value -- a good heuristic can more than pay back that extra effort.
euristic than h,

If A," uses h,, and A,” uses h,, then every node expanded by A,” is also
expanded by A"
* F,{G)=F.(G)=g(G), so hoth A," and A," expand all nodes with f < g{G})
* FifN)=giN)+, (N) < F,(N)=g(N)+h.(N) < 5{G)
That is, A,* expands at least as many nodes as A,* and we say that A)*
is hetter informed than A"

Note that A* with any non-zero admissible heuristic is better informed
{and therefore typically expands fewer nodes) than Uniferm Cost
search.

sz

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide2.7.11

New topic:

Why does consistency allow us to guarantee that A* will find optimal paths? The key insight is that))
consistency ensures that the f values of expanded nodes will be non-decreasing over time. BRI LR e

Consider two nodes N; and N; such that the latter is a descendant of the former in the search tree. +)= g(My+histate®)) = giNp+eN N+histate(ty)
Then, we can write out the values of f as shown here, involving the actual path length g(N;), the cost
of the edge between the nodes ¢(N;, N;) and the heuristic values of the two corresponding states.

Consistency —» Non-decreasing f

+ M, is a descendant of N, in the search tree

+ M) = g(N)Fhistate;))

-) = giN)+h(stated;)) = g(Ny+e(NN+histate(N))

« By consistency, h(state(N)) S histate(N)i+c(N;,N)

+ Then, f(N;) - fiN;)

- Thus, when A%, with a consistent heuristic, expands a node, all of its
descendants have f values greater or equal to the expanded node (as do all the
nodes left on Q). So, the f values of expanded nodes can never decrease.

Bt o

Slide2.7.13

Now we can show that if we have nodes expanded in non-decreasing order of f, then thefirst time
we expand a node whose state is s, then we have found the optimal path to the state. If you recall,
this was the condition that enabled us to use the strict Expanded lit, that is, we never need to re- corresponding s=state(N)

visit (or re-expand) a state.

Non-decreasing f —» first path is optimal

« A’ with consistent heuristic expands nodes N in non-decreasing order of f(N)
- Then, when a node N is expanded, we have found the shortest path to the
corresponding s=state{N)

« Imagine that we later found another node N® with the same corresponding state s
then we know that

e
« 1N = gN) + his)
+ 1(NO) = (M) + his)

ez

Consistency —» Non-decreasing f

+ fN) = g(N)Fhistate;))

e o

Slide2.7.12

By consistency of the heuristic estimates, we know that the heuristic estimate cannot decrease more
than the edge cost. So, the value of f in the descendant node cannot go down; it must stay the same
or go up.

By this reasoning we can conclude that whenever A* expands a node, the new nodes' f values must
be greater or equal to that of the expanded node. Also, since the expanded node must have had an f
value that was a minimum of the f valuesin Q, this means that no nodes in Q after this expansion
can have alower f value than the most recently expanded node. That is, if we track the series of f
values of expanded nodes over time, this seriesis non-decreasing.

Non-decreasing f —» first path is optimal

+ A with consistent heuristic expands nodes N in non-decreasing order of f(N)
» Then, when a node N is expanded, we have found the shortest path to the

sz

Slide2.7.14

To prove this, let's assume that we later found another node N' that corresponds to the same state as
apreviously expanded node N. We have shown that the f value of N' is greater or equal that of N.
But, since the heuristic values of these nodes must be the same - since they correspond to the same
underlying graph state - the difference in f values must be accounted by a difference in actual path
length.

Slide2.7.15

So, we can conclude that the second path cannot be shorter than the first path we already found, and

o we can ignore the new path!

Uniform Cost + Strict Expanded List

{order of time growth in worst case)
Qur simple algorithm can he summarized as follows:
1. Take the best search node from Q
2. Are we there yet?
3. Add path extensions to Q

Assume strict Expanded “list” is implemented as a hash table, which gives
constant time access. Q also implemented as a hash table.

- Spring 02+ 15

¢

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Non-decreasing f — first path is optimal

- A" with consistent heuristic expands nodes N in non-decreasing order of f(N)

+ Then, when a nede N is expanded, we have found the shortest path to the
corresponding s=state{N)

- Imagine that we later found another node N® with the same corresponding state s
then we know that

+ 1IN0 2 6y
+ f(N) = gN) + h(s)
+ 1N = g(N°) + his)
+ So, we can conclude that
* g(No)Z g(N)
+ And we can safely ignore the second path to s as we would with the strict
Expanded list.

oot g

Slide2.7.16
Final topic:

Let's analyze the behavior of uniform-cost search with a strict Expanded List. This algorithmisvery
similar to the well known Dijkstra's algorithm for shortest paths in agraph, but we will keep the
name we have been using. This analysiswill apply to A* with astrict Expanded list, since in the
worst case they are the same algorithm.

To simplify our approach to the analysis, we can think of the algorithm as boiled down to three
steps.

1. Pulling paths off of Q,
2. Checking whether we are done and
3. Adding the relevant path extensionsto Q.

In what follows, we assume that the Expanded list isnot a*real" list but some constant-time way of
checking that a state has been expanded (e.g., by looking at a mark on the state or via a hash-table).

We also assume that Q isimplemented as a hash table, which has constant time access (and insertion) cost. Thisis so we can find whether a node with a given state is already on

Q.
Slide 2.7.17

Later, it will become important to distinguish the case of "sparse” graphs, where the states have a
nearly constant number of neighbors and "dense" graphs where the number of neighbors grows with
the number of states. In the dense case, the total number of edgesis O(N2), which is substantial. 1.

Uniferm Cost + Strict Expanded List

{order of time growth in worst case)
Our simple algorithm can be summarized as follows:
Take the best search node from Q
2. Are we there yet?
3. Add path extensions to Q

Assume strict Expanded “list” is implemented as a hash table, which gives
constant time access. Q also implemented as a hash table.

Assume we have a graph with N nodes and L links. Graphs where nodes have O(N)
links are dense. Graphs where the nodes have a nearly constant number of links
are sparse. For dense graphs, L is O(N?).

e

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide2.7.18
Uniform Cost + Strict Expanded List
(order of time growth in worst case) So, let's ask the question, how many nodes are taken from Q (expanded) over the life of the
Our simple algerithm can be summarized as follows: algorithm (in the worst case)? Here we assume that when we add a node to Q, we check whether a
1. Take the best search node from Q node already exists for that state and keep only the node with the shorter path. Given this and the use
2. Are we there yet? of astrict Expanded list, we know that the worst-case number of expansionsis N, the total number
3. Add path extensions to Q of states.
Assume strict Expanded “list” is implemented as a hash table, which gives
constant time access. Q also implemented as a hash table.
Assume we have a graph with N nodes and L links. Graphs where nodes have O{N)
links are dense. Graphs where the nodes have a nearly constant number of links
are sparse. For dense graphs, L is O{N2).
Nodes taken from @ ? O(N)
p - Spring 02 - 15 (E
Slide2.7.19
Uniform Cost + Strict Expanded List
What's the cost of expanding a node? Assume we scan Q to pick the best paths. Then the cost is of (order of time growth in worst case)
the order of the number of pathsin Q, which is O(N) also, since we only keep the best path to a Our simple algerithm can he summarized as follows:
state. 1. Take the best search node from Q
2. Are we there yet?
3. Add path extensions to Q
Assume strict Expanded “list” is implemented as a hash table, which gives
constant time access. Q also implemented as a hash table.
Assume we have a graph with N nodes and L links. Graphs where nodes have O{N)
links are dense. Graphs where the nodes have a nearly constant number of links
are sparse. For dense graphs, L is O(N2).
Nodes taken from Q ? O(N)
Cost of picking a node from Q using linear scan? ON)
= Spring 02 + 14 4
Slide2.7.20
Uniform Cost + Strict Expanded List
(order of time growth in worst case) How many times do we (attempt to) add paths to Q? Well, since we expand every state at most once
Our simple algorithm can be summarized as follows: and since we only add pathsto direct neighbors (links) of that state, then the total number is
1. Take the best search node from Q bounded by the total number of links in the graph.

2. Are we there yet?
3. Add path extensions to Q

Assume strict Expanded “list” is implemented as a hash table, which gives
constant time access. Q also implemented as a hash table.

Assume we have a graph with N nodes and L links. Graphs where nodes have O{N)
links are dense. Graphs where the nodes have a nearly constant number of links
are sparse. For dense graphs, L is O(N?).

Nedes taken from Q ? ON)
Cost of picking a node from Q using linear scan? ON)
Attempts to add nedes to Q (many are rejected)? oLy
- Spring 02+ 20 4
Slide2.7.21

Uniform Cest + Strict Expanded List

Adding to the Q, assuming it is a hash table, as we have been assuming here, can be done in (order of time growth in worst case)
constant time. Our simple algorithm can be summarized as follows:

1. Take the best search node from Q
2. Are we there yet?
3. Add path extensions to Q

Assume strict Expanded “list” is implemented as a hash table, which gives
constant time access. Q also implemented as a hash table.

Assume we have a graph with N nedes and L links. Graphs where nodes have O(N)
links are dense. Graphs where the nodes have a nearly constant number of links
are sparse. For dense graphs, L is O(N?).

Nodes taken from Q ? ON)
Cost of picking a node from Q using linear scan? ON)
Attempts to add nodes to Q (many are rejected)? oL)
Cost of adding anode to Q ? o)

wesmiza

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide2.7.22
A*
{order of time growth in worst case) Putting it al together gives usatotal cost on the order of O(N2+L) which, since L is at worst O(N?)
Qur simple algorithm can he summarized as follows: is essentially O(NZ).

1. Take the best search node from Q
2. Are we there yet?
3. Add path extensions to Q

Assume strict Expanded “list” is implemented as a hash table, which gives
constant time access. Q also implemented as a hash table.

Assume we have a graph with N nodes and L links. Graphs where nodes have O{N)
links are dense. Graphs where the nodes have a nearly constant number of links
are sparse. For dense graphs, L is O{N2).

Nodes taken from Q ? ON)
Cost of picking a node from Q using linear scan? O(N)
Attempts to add nodes to Q (many are rejected)? oiL)
Cost of adding anode to Q ? of)
Total cost ? O(NZ+L)
o5 Spingoz- o2 (E
Slide2.7.23

Should we use a Priority Queue?
If you know about priority queues, you might think that they are natural asimplementation of Q,

since one can efficiently find the best element in such a quee. « A priority queue is a data structure that makes it efficient to identify the

“best” element of a set. A PQ is typically implemented as a balanced tree.

+ The time to find hest element in a PQ grows as O{log N) for a set of size N.
This is very much better than N for large N. Also, note that even if we don't
discard paths to Expanded nodes, the access is still O{log N), since Q(leg
N3=0Oflog N).

Bz o

Slide2.7.24
Should we use a Priority Queue?
Note, however, that adding elements to such a Q is more expensive than adding elementsto alist or
ahash table. So, whether it's worth it depends on how many additions are done. Aswe said, thisis
order of L, the number of links.

= Apriority queue is a data structure that makes it efficient to identify the
“hest” element of a set. APQ is typically implemented as a halanced tree.

+ The time to find best element in a PQ grows as Oflog M) for a set of size N.
This is very much better than N for large N. Also, note that even if we don't
discard paths to Expanded nodes, the access is still O{log N), since O{log
N3=0(log N).

+ However, adding elements to a PQ also has time that grows as O(leg N).

= Our algorithm does up to N “find best” operations and it doesup to L
“add” operations. If Q is a PQ,then costis O(N'log N + L*log N)

wespmizea

Slide2.7.25
Should we use a Priority Queue?
For adense graph, where L is O(N2), then the priority queue will not be worth it. But, for a sparse
graph it will.

= A priority queue is a data structure that makes it efficient to identify the
“hest” element of a set. APQ is typically implemented as a halanced tree.

= The time to find best element in a PQ grows as Oflog M) for a set of size N.
This is very much better than N for large N. Also, note that even if we don't
discard paths to Expanded nodes, the access is still O{log N), since O{log
N&=0flog N).

+ However, adding elements to a PQ also has time that grows as O{log N).

« Our algorithm does up to N “find best” operations and it doesup to L
“add” operations. IfQ is a PQ, then costis ON*log N + L*leg N)

+ If graph is dense, and L is O{N®), then a PQ is not advisable.

+ If graph is sparse {the more common case}, and L is O(N), thena PQis
highly desirable.

ez

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Cost and Performance

Searching a tree with N nodes and L links

Search Worst Time Worst Time Worst | Guaranteed to find
Method {Dense) (Sparse) Space | shortest path
Uniform Cost

A O(N?) Q(N log M) ON) Yes

Searching a tree with branching factor b and depth d

L=N=his

Worst case time is proportional to number of nodes created
Worst case space is proportional to maximal length of Q (and Expanded)

- Springo2- 25

¢

Slide2.7.26

Here we summarize the worst-case performance of UC (and A*, which is the same). Note, however,
that we expect A* with agood heuristic to outperform UC in practice since it will expand at most as
many nodes as UC. The worst case cost (with an uninformative heuristic) remains the same.

By theway, in talking about space we have focused on the number of entriesin Q but have not
mentioned the length of the paths. One might think that this would actually be the dominant factor.
But, recall that we are unrolling the graph into the search tree and each node only needs to have a
link to its unique ancestor in the tree and so a node really requires constant space.

As before, you can think of the performance of these algorithms as alow-order polynomial (N2) or
as an intractable exponential, depending on how one describes the search space.

