

1. Rhythmic pattern induction \& expectation chunking of repeating patterns

2. Meter --

the inferred metrical grid

3. The Time Sense

[^0]
Rhythm: patterns of events in time

What is rhythm? Perceived patterns of events in time What constitutes an event? What makes events salient (accented)?
How many individual events can we distinguish (< 12/sec)?
Auditory sense and the time sense (supramodal)

- Perception of duration, weber fractions for time Rhythmic pattern induction \& expectation
- Rhythmic pattern invariance w. respect to tempo Meter (regular underlying grid of accented/nonaccented events)
Rhythmic hierarchies, rhythmic complexity
Small integer-ratios again: models (clock, oscillator, timing net)
Polyrhythms; analogy to polyphony
Interactions between melody \& rhythm: accents
Rhythms: musical, body, and brain; kinesis

Music notation: time durations

Fig. 2.2 in Sethares, W. A. Rhythm and Transforms. Springer, 2007. ISBN: 9781846286391 . Preview in|Google Books.

Tempo (absolute timescale, in beats/minute)

Figure by MIT OpenCourseWare.

Tempo

Ranges of events; intervals from $\mathbf{5 0} \mathbf{~ m s}$ to $\mathbf{2}$ sec Too short: events fuse
Too long: successive events don't cohere, interact Pitch (> $\mathbf{3 0 ~ H z) ; ~ i n f r a - p i t c h ~ (~} \mathbf{1 0 - 3 0} \mathbf{~ H z) ; ~ r h y t h m ~ (< ~}$ 10 Hz)
For a brisk tempo of $120 \mathrm{bpm}, 2 \mathrm{~Hz}$, a quarter note is $500 \mathrm{msec}(2 \mathrm{~Hz})$ an eighth note is $250 \mathrm{msec}(4 \mathrm{~Hz})$ a sixteenth note is $125 \mathrm{~ms}(\mathbf{8 ~ H z})$ a 32nd note is $62 \mathrm{~ms}(16 \mathrm{~Hz})$

Rhythm: general observations I

- Different levels of temporal organization
- Handel's basketball game analogy:
- Patterning
- Rhythm: perception of grouping \& ordering of events
- Perceptual groupings of events in time create perceived rhythmic patterns
- Temporal pattern expectancies create groupings
- pattern repetition and
- similar patterns of salient auditory contrasts (accents)
- Underlying temporal framework
- (metrical grid, meter, tempo)

Rhythm: recurring patterns of events in time

Every repeating pattern creates an expectancy of its continuation

Figure by MIT OpenCourseWare.

Every repeating pattern creates an expectancy of its continuation

Further, there is a "chunking" of the repeating pattern (the invariant pattern becomes an object)

Figure by MIT OpenCourseWare.

Rhythm generation demonstration

- Repeating patterns of events
- Drum score representation
- Synthesizer

Acoustical grouping

SIMILARITY

Sequential Grouping
(Arrows indicate point of realization of change.)

Change in loudness

Change in timbre

Change in pitch interval

[^1]
Melodic \& rhythmic grouping

[^2]
Temporal grouping

40 Chapter 3. Grouping

PROXIMITY

Different distance between attack points.

Grouping

Different distance between end of one event and beginning of another. (Attack points equidistant.)

SIMILARITY

Similarity effect: a boundary is formed by a change in the consistency of events. (Arrows indicate point of realization of change.)

Change in duration of events.

Change in articulation

- (Attack points equidistant.)

Figure 3.4
Temporal grouping.

Source: Snyder, Bob. Music and Memory.
Cambridge, MA: MIT Press, 2000.
Courtesy of MIT Press. Used with permission.

Repetition of a rhythmic pattern establishes the pattern

Image removed due to copyright restrictions.
a) Two measure rhythmic pattern.
b) Complete 2-bar pattern, followed by a repetition of the complete pattern.
c) Complete 2-bar pattern, followed by two repetitions of the 2 nd measure.
d) Complete 2-bar pattern, followed by two repetitions of the 2 nd measure in reverse.
e) Complete 2-bar pattern; unique 3 rd measure, and then a repetition of the 2 nd measure.

Necklace notation: cyclical repeating patterns

Fig. 2.6 in Sethares, W. A. Rhythm and Transforms.
Springer, 2007. ISBN: 9781846286391.
Preview in|Google Books.

Necklace notation: cyclical repeating patterns

Fig. 2.4 in Sethares, W. A. Rhythm and Transforms. Springer, 2007. ISBN: 9781846286391. Preview in Google Books.

Necklace notation: cyclical repeating patterns

Fig. 2.5 in Sethares, W. A. Rhythm and Transforms. Springer, 2007. ISBN: 9781846286391. Preview in Google Books.

Memory processes generate musical context

Tonality induction -- repetition of particular notes \& sets of harmonics that establishes a tonal expectation through which all subsequent incoming tonal patterns are processed -- establishment of the tonic

Rhythmic induction -- repetition of patterns of accented and unaccented events that establishes a temporal pattern of expectation for subsequent events

Both kinds of induction operate on similarities and contrasts between previous and subsequent sounds \& events
OLD + NEW heuristic:

1) OLD incoming patterns similar to previous ones build up the images of previous ones, confirm + strengthen expectations, create relaxation
2) NEW different patterns create contrasts that violate expectations established from previous inputs, create tension
3) degree of contrast (distance in perceptual space) determines the degree of tension created/resolved

Hierarchy \& tíme order (Snyder, Music \& Memory, MIT Press, 2000)

Sequence 1

Sequence 2

Figure 13.2
Hierarchy and time order. These diagrams represent a highly simplified representation of two ways of structuring time-ordered sequences of musical events. Both sequences have the same number of events. Complete chunks at various levels are represented by horizontal brackets; higher-level chunking boundaries, by dashed vertical lines; and cues, by asterisks.

Source: Snyder, Bob. Music and Memory.
Cambridge, MA: MIT Press, 2000.
Courtesy of MIT Press. Used with permission.

Periodic patterns invariably build up in delay loops whose recurrence times equals the period of the pattern and its multiples.

Temporal coding of rhythm

Stimulus-driven temporal patterns of spikes encode event structures

- Exist at the cortical level for periodicities $<15 \mathrm{~Hz}$
- Can directly encode rhythmic patterns
- Amenable to processing via recurrent timing nets (RTNs)
- Chunk recurrent patterns of events to create rhythmic expectancies

no Δ
Δ pitch
Δ timbre

Figure by MIT OpenCourseWare.
Δ duration

In addition to rhythmic patterning,
we seem to infer an underlying metrical grid to the stream of events (e.g. inferences that allow us to tap our fingers or toes to a beat or to keep time with the music)

This perception of an underlying metrical order is important for coordination of musicians playing in groups.

Meter serves as a temporal context that is somewhat independent of individual events (somewhat like the tonic vis-a-vis melody)

3:	I	I	I	1	I	I	I	I	I	I	I	I	I	I	I	I	I	I

4: \|

Meter and Accent

The recurrent groups of pulsations are called meters: for example, duple meter, triple meter, and quadruple meter. The beats within the measures are counted and accented:
2: one, two \mid one, two \mid
3: $\overline{\text { one }, ~ t w o, ~ t h r e e ~} \mid$ one, two, three \mid
4: one, two, three, four | one, two, three, four \mid
6: one, two, three, four, five, six |

Meter (e.g. 4 pulses per measure, accent)

Definition: The number of pulses between the more or less regularly recurring accents (Cooper and Meyer, 1960).
Most authors define meter similarly, as somehow dependent upon (and perhaps contributing to) patterns of accent.
Zuckerkandl (1956), however, views meter as a series of "waves" that carry the listener continuously from one beat to the next. For him, they result not from accentual patterns but simply and naturally from the constant demarcation of equal time intervals.

Pulse \& the metrical grid (meter)

Pulse

Meter

Figure 12.5
Pulse and meter.

Source: Snyder, Bob. Music and Memory.
Cambridge, MA: MIT Press, 2000. Courtesy of MIT Press.
Used with permission.

Pulse

- Definition: A series of regularly recurring, precisely equivalent stimuli (Cooper and Meyer, 1960).
- According to Parncutt (1987), a chain of events, roughly equally spaced in time.

Visual grouping

Dember \& Bagwell, 1985, A history of perception, Topics in the History of Psychology, Kimble \& Schlesinger, eds.
\square

\square
\square
\square
\square

\square

\square
\square
\square
\square
\square
$\square \square$

\square
\square

\square

Figure by MIT OpenCourseWare.

Accent causes grouping which determines perceived rhythmic pattern

Rhythm is a perceptual attribute

Fore 11.1

stintiov Hythen A series of equally timed siments (i.e. equal Iemporal interval tirie te onset of sucoenive identical elements) is perceived as thythmical A series of monal elements, as in hal is perceived to form groum of 2,3 , or 4 elements. The initial tenet of eath group is perceived to be accented (repreientied by a bigger filled circie) and trine intervals helwem elements do not appear equal If every sectind or thand element is Eftives as in ch, the ciments are percrived to form groups so that the more inimse innth begin each group and there appear to be longer intervals between groups. If every End ar thand clonert is larger, as in (n) the elements are petceived to forms groups so he te longer duration elements are the lat elements of each groun, the longer duration ant ippor socentest and there appear to be longer intervas befwern groum, if an moond interval behwem ten elements is noreaned so that the elenents fore poupe Fils, it in (if. then the first elements of each group appean acmented if the longer rral is tightly greater than the ether istervals, test the lant element of each group memental if the longe ieterval is mach greater than the other inierval if the Ent axt different frquenois, as in (A then the elements are percivived to form groups "tailr tigher-ptch element begins each group and appears accented and the interval inum grups appears longer. If ose notr occars less often, it may apprar to be accemed aikin aci groue.

Source: Handel, S. Listening: An Introduction to the Perception of Auditory Events. Cambridge, MA: MIT Press, 1989.

Courtesy of MIT Press. Used with permission.

Thursday, May 14, 2009

Factors that cause events to be accented: auditory contrast, salience

- note duration
- note intensity
- sharpness of attack
- duration of silence preceding it
- contrast: melodic contour/ pitch change
- regularity of timing (accented beats are "on time")
- position within a metrical organization
- According to Cooper \& Meyer (1960), an accented tone must be set off from the rest of the series in some way (i.e. a salient contrast)

Expressive timing \& expectation

expressive timing Definition:

Music psychologists' term for the deviations from a strictly uniform pulse that occur in live performance. These deviations most commonly occur near the ends of phrases and other grouping units. See Todd (1985).

Meter and beat induction
(a)

(b)

Source: Palmer, C., and C. L. Krumhansl.
"Mental representations for musical meter."
J Exp Psychol Hum Percept Perform 16, no. 4 (Nov 1990): 728-741.
Courtesy of the American Psychological Association.

rhythmic, metrical dissonance

- metrical dissonance Definition: According to Krebs (1987), a situation in which the pulses in two metrical levels are not well aligned, either because the duration of the pulses in one level is not an integral multiple or division of the duration of the pulses in the other level, or because the pulses in one level are displaced by some constant interval from those in the other level. See also Yeston's rhythmic dissonance .

Event-related potentials \& violations of temporal expectation

 (notes, chords, beats, words (phonetic, semantic), many other levels of expectation)Photo and graph of EEG/ERP removed due to copyright restrictions.
See: hhttp://www.musicianbrain.com/methods.php\#methods

Available online at www.sciencedirect.com

Research report

Gamma-band activity reflects the metric structure of rhythmic tone sequences

Joel S. Snyder ${ }^{\text {a/T, Edward W. Large }}{ }^{\text {b }}$
${ }^{3}$ Department of Psychology, Cornell University, Ithaca, NY 14853, USA
${ }^{\text {b }}$ Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33432, USA

Accepted 28 December 2004
Available online 17 February 2005

Abstract

Relatively little is known about the dynamics of auditory cortical riythm processing using non-invasive methods, partly because resolving responses to events in patterns is difficult using long-latency auditory neuroelectric responses. We studied the relationship between shortlatency gamma-band $(20-60 \mathrm{~Hz})$ activity (GBA) and the structure of rhythmic tone sequences. We show that induced (non-phase-locked) GBA predicts tone onsets and persists when expected tones are omitted. Evoked (phase-locked) GBA occurs in response to tone onsets with -50 ms latency, and is strongly diminished during tone omissions. These properties of auditory GBA correspond with perception of meter in acoustic sequences and provide evidence for the dynamic allocation of attention to temporally structured auditory sequences.

D 2005 Elsevier B.V. All rights reserved.
Theme: Neural basis of behavior
Topic: Cognition
Keywords: Electroencephalography; Gamma-band activity; Rhythm perception; Music; Speech

Snyder \& Large experiments on beat induction

A
Periodic control

B
Binary control

D

Fig. 1. Puretone ($262 \mathrm{~Hz}, 50 \mathrm{~ms}$ duration) stimulus patterns are shown with inter-onset intervals of 390 ms (above) and schematized metrical accent representations (below). The periodic control condition consisted of isochronous tones designed to elicit a simple pulse perception (A). The binary control condition consisted of altemating loud and soft tones, designed to elicit a duple meter perception (B). The omit-loud condition consisted of the binary control pattern with missing loud tones on 30% of two-tone cycles (C). The orrit-soft condition consisted of the binary control pattern with missing soft tones on $30 \% 35$ of two-tone cycles (D).

Source: Snyder, J. S., and E. W. Large. "Gamma-band Activity Reflects the Metric Structure of Rhythmic Tone Sequences." Cog Brain Res 24 (2005): 117-126.

Figure 2. Process to calculate evoked and gamma-band activity (GBA).

Binary Control

Loud Tone Absent
Induced

Evoked

Soft Tone Absent
Induced

Evoked

Time (ms)

B

Figure 4.
Courtesy of University of Finance and Management, Warsaw. Used with permission.
(a) Time-frequency representation of the evoked and induced GBA results, averaged over all subjects. Tone onset occurs at zero and 390 ms. (b) Comparison of induced/evoked peak activity in the presence and absence of loud and soft tones.

Source: Snyder, J. S., and E. W. Large. "Gamma-band Activity Reflects the Metric Structure of Rhythmic Tone Sequences." Cog Brain Res 24 (2005): 117-126.
Courtesy Elsevier, Inc.,|http://www.sciencedirect.com. Used with permission.
Figure 7. Tone omissions: induced and evoked GBA.

Tone Position

Figure 5.

Perturbed stimuli; ' x ' represents tone onset.

A.

Courtesy of University of Finance and Management, Warsaw. Used with permission.
Figure 6.
Time-frequency representation of the evoked and induced GBA in response to early, late, or on-time tones averaged over all subjects. The white dashed line represents where a tone was expected. (a) Evoked activity is predicted by the presence of tones. The white box highlights an exception, activity where the tone was expected in the case of an early tone. (b) The white box indicates a peak in the induced activity where the tone was expected for the case of late tones.

Courtesy of University of Finance and Management, Warsaw. Used with permission.
Figure 6.
Time-frequency representation of the evoked and induced GBA in response to early, late, or on-time tones averaged over all subjects. The white dashed line represents where a tone was expected. (a) Evoked activity is predicted by the presence of tones. The white box highlights an exception, activity where the tone was expected in the case of an early tone. (b) The white box indicates a peak in the induced activity where the tone was expected for the case of late tones.

SUMMARY

Evoked GBA appears to represent sensory processing as predicted by the presence of tones, much like the MLR. Induced GBA may reflect temporally precise expectancies for strongly and weakly accented events in

Abstract

sound patterns. Moreover, induced GBA behaves in a manner consistent with perception-action coordination studies using perturbed temporal sequences. Taken together, the characteristics of induced GBA provide evidence for an active, dynamic system capable of making predictions (i.e., anticipation), encoding metrical patterns and recovering from unexpected stimuli.

GBA appears to be a useful neuroelectric correlate of rhythmic expectation and may therefore reflect pulse perception. Due to the anticipatory nature of GBA, it may be supposed there is an attentional dependence. Future research should aim to manipulate attentional state, localize neural sources and further probe the role of induced GBA in meter perception.

Rhythmic streaming (segregation/fusion of rhythmic

- African xylophone music
- Timbre effects
- Pitch difference
- Competition of frequency separations

Rhythmic elaboration -subdividing time intervals

Figure by MIT OpenCourseWare.

Smulevitch \& Povel (2000) in Rhythm: Perception \& Production, Desain \& Windsor eds

Rhythmic Hierarchy

Source: Handel, S. Listening: An Introduction to the Perception of Auditory Events. Cambridge, MA: MIT Press, 1989.
Courtesy of MIT Press. Used with permission.

Handel

Rhythmic Hierarchy

Polyrhythms

Source: Handel, S. Listening: An Introduction to the Perception of Auditory Events. Cambridge, MA: MIT Press, 1989.
Handel

Figure 11.5
Rhythmic patterns that are used in the drum music of Africa. Typically several rhythmic laes are played simultaneously, and often a master drummer improvises on top of the mepeating rhythmic pattems. Polyrtythms are defined as the simultaneous presentation of two isochronous patterns that do not share a common denominator. Three examples are bown. The element at which the polyrhythm repeats can be calculated by multiplying the number of elements in each line together (e.g. the pattern $2 \times 5 \times 7$ ends on the 70th element and repeats on the 71st element).

Polyrhythms (polyrhythms:rhythm::polyphony:melody)

Source: Handel, S. Listening: An Introduction to the Perception of Auditory Events. Cambridge, MA: MIT Press, 1989.
Courtesy of MIT Press. Used with permission.
Start
Conlon Nancarrow

POLYRHYTHMS

ELEMENTS

Repeat

	1	2	3	4	5	6	7	8	9	10	11	12	13
3×4	3				3				3				3
	4			4			4			4			4

	1			20		30		43
	2							2
$2 \times 3 \times 7$	3		3			3		3
	7	7	7	7	7	7	7	7

$54 \quad 71$
$2 \quad 2 \quad 2$

$$
2 \times 5 \times 7 \quad 5
$$

$5 \quad 5$
5
5
5

Rhythm \& Grouping

- Three examples from
- Bregman \& Ahad
- Auditory Scene Analysis CD
- African xylophone music interference between rhythmic patterns separation of patterns via pitch differences separation of patterns via timbral diffs

Conflicting rhythms interfere unless the events can be separated out in separate streams

Metrical vs. rhythmic phrases (rel. independence)

(Snyder, Music \& Memory)

Meter $\longrightarrow 1^{1}$| 1 | 4 | 2 | 2 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: |

Meter $\longrightarrow 1^{1}$| 1 | 4 | 2 | 2 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: |

Meter $\longrightarrow 1^{1}\left[\begin{array}{llllll}1 & 4 & 4 & 2 \\ 1 & 1 & 1 & 1 & 1\end{array}\right.$
Phenomenal accent: louder event in middle of phrase is accented.

2

Structural accent: first and last events of phrase are accented.

2

Metrical accent: first and third beats of measure are accented.

Figure 12.4
Three kinds of accent.

Source: Snyder, Bob. Music and Memory.
Cambridge, MA: MIT Press, 2000. Courtesy of MIT Press.
Used with permission.

Major points -- rhythm

Rhythm involves perception of temporal patterns of events
Recurring patterns group into chunks that create expectations of future temporal occurences of events (rhythmic pattern induction)

Rhythmic grouping occurs on the same timescale as melodic grouping.

We also infer a metrical grid that involves a regular set of timepoints (pulse, tatum) and a regular pattern of accented/ unaccented events (meter). (Metrical induction)

Expectations generated from rhythmic grouping and metrical induction processes can be manipulated for tension-relaxation effect.

Time, memory, and anticipation

Image of Salvador Dali's painting "The Persistence of Memory"
removed due to copyright restrictions.
See http://en.wikipedia.org/wiki/File:The_Persistence_of_Memory.jpg

Temporal integration windows

Figure 2.2 Brain processes and musical time.

Source: Snyder, Bob. Music and Memory.
Cambridge, MA: MIT Press, 2000.
Courtesy of MIT Press. Used with permission.

Table 1.1
Three Levels of Musical Experience

Timescales \& memory

(Snyder, Music \& Memory)

Source: Snyder, Bob. Music and Memory. Cambridge, MA: MIT Press, 2000.
Courtesy of MIT Press. Used with permission.

	Events per second	Seconds per event
EVENT FUSION (early processing)	16,384	1/16,384
	8,192	1/8,192
	4,096	1/4,096
	2,048	1/2,048
Functional units = individual events and boundaries; pitches, simultaneous intervals, loudness changes, etc.	1,024	1/1,024
	512	1/512
	256	1/256
	128	1/128
	64	1/64
	32	1/32
MELODIC and RHYTHMIC	16	1/16
GROUPING	8	1/8
(short-term memory)	4	1/4
Functional units $=$ patterns; rhythmic and melodic groupings, phrases.	2	1/2
	1	1
	1/2	2
	1/4	4
	1/8	8
	1/16	16
FORM	1/32	32
(long-term memory)	1/64	1 min 4 sec
Functional units = large scale constancies; sections, movements, entire pieces.	1/128	2 min 8 sec
	1/256	4 min 16 sec
	1/512	8 min 32 sec
	1/1,024	17 min 4 sec
	1/2,048	34 min 8 sec
	1/4,096	1 hr 8 min 16 sec .

melodic and rhythmic grouping," and the "level of musical form" (see table 1.1). ${ }^{16}$ The three types of processing define three basic time scales on which musical events and patterns take place.

Memory \& grouping

(Snyder, Music \& Memory)

Source: Synder, B. Music and Memory. Cambridge, MA: MIT Press, 2000.Courtesy of MIT Press.

Used with permission.

Figure 3.1
Levels of sequential grouping: Event fusion, melodic and rhythmic grouping, and formal sectioning. Note that pattern formation at each level requires comparison of events over increasing time spans. Event fusion requires comparison within 250 msec , melodic and rhythmic patterns require comparison across a time span of from 250 msec to 8 sec , and formal sections require comparisons across a time span of from 8 sec to as much as 1 hour. Also note that each individual unit at one level becomes a part of a unit at the next level up.

Memory processes generate musical context

Tonality induction -- repetition of particular notes \& sets of harmonics that establishes a tonal expectation through which all subsequent incoming tonal patterns are processed -- establishment of the tonic

Rhythmic induction -- repetition of patterns of accented and unaccented events that establishes a temporal pattern of expectation for subsequent events

Both kinds of induction operate on similarities and contrasts between previous and subsequent sounds \& events
OLD + NEW heuristic:

1) OLD incoming patterns similar to previous ones build up the images of previous ones, confirm + strengthen expectations, create relaxation
2) NEW different patterns create contrasts that violate expectations established from previous inputs, create tension
3) degree of contrast (distance in perceptual space) determines

Time, memory, and anticipation

Time

What is time? Newtonian \& Bergsonian time
The perception of time
Duration, succession, and perspective
Relativity of time
Constant Weber fraction for time estimation
Aging \& time perception (internal clocks slow down)
Duration and event-density
Learning \& temporal prediction (anticipation)
Brains as temporal prediction machines
Models of time (interval) perception \& production
Clock models -- accumulators (hourglass)
Oscillator models (pendulum)
Delay-detectors and static representations of time
Rhythmic hierarchies, simple ratios, and groupings
Temporal memory traces (delay loops, cyclochronism)

Time

"time...does not exist without changes." Aristotle, Physics, IV

Time as an absolute world-coordinate (Newtonian time) vs. time as epistemic change (psychological, Bergsonian time)
"A man in sound sleep, or strongly occupy'd with one thought, is insensible of time... Whenever we have no successive peceptions, we have no notion of time, even tho' there be a real succession in the objects...time cannot make its appearance to the mind, either alone, or attended with a steady unchangeable object, but is always discovered by some perceivable succession of changeable objects." Hume as quoted in Fraisse, pp. 3-4

Measurement of time

How is time measured, psychologically, by the neural mechanisms and informational organizations that constitute our minds?

Duration

Our sense of the length of time (Fraisse, 1962, The Psychology of Time)
Constant Weber fractions for interval estimation
Errors are proportional to the interval estimated
Weber's law for timing; jnd's on the order of 8-12\%
depending on modality (hearing, touch, vision)
Temporal prediction of reward in conditioning
(Scalar timing intimately related to the response latency in conditioning when interval
between stimulus and reward are varied, see R. Church, A Concise Introduction to Scalar
Timing Theory, 2003. See also Fraisse's (1963) discussion of Pavlov and Popov cyclochronism model)
Some general observations (Fraisse via Snyder, Music \& Memory):
Filled time durations appear shorter than empty ones
Rate of novel events makes durations appear shorter
(monotonous durations are experienced as longer, but remembered as shorter) Aging: young children overestimate durations; older adults underestimate durations
(A systematic change in internal timing mechanisms with age? cf Δ absolute pitch)
Implications for music: pieces with high event densities go faster; those
with low ones seem to take forever; duration is in the mind of the beholder and his/her expectations

Beat
 induction
 and
 duration discrimination

Weber's
Law
Image removed due to copyright restrictions.
Graph illustrating Weber's Law. See Fig. 4.13 in Jones and Yee,
"Attending to auditory events: the role of temporal organization."
In Thinking in Sound. Edited by E. Bigand and S. McAdams.
New York, NY: Oxford University Press, 1993. ISBN: 9780198522577.

Succession

Time order: before and after (Fraisse, Snyder)

Our recollection of time order depends on memory mechanisms, how distant in the past were the events

Representation of order in long-term memory is poor
LTM is massively parallel, not serial
Time order within chunks is better preserved than between them Primacy and recency: first and last elements in a chunk best remembered, most salient

Perspective: Past, present, future

Mediated by different psych/brain mechanisms
Past: long term memory
Present: working memory
Future: anticipation, planning

Music (like sports) focuses our minds on the present, on events that have occurred in the last few seconds to minutes.

Mechanisms of timing and temporal processing

- Temporal contiguity models of learning
- Clock models
- Switched accumulator, e.g. hourglass
- Explicit measurement of time durations
- Ordering of durations by magnitude
- Time delay detectors/generators
- Array of tuned delay elements, detectors, oscillators
- Explicit measurement of time durations; storage of patterns
- Generators of time delays (timers)
- Rhythmic hierarchies (Jones)
- well-formed patterns create strong expectations
- Temporal memory trace
- Timeline of events stored in reverberating memory
- Readout of events \& (timing of) their consequences

Temporal expectations on different timescales

- Pitch: repetitions on microtemporal timescales (200 usec to 30 ms)
- Infra-pitch: not well defined, repetitions with periods $30-100 \mathrm{~ms}$
- Rhythms: patterns of individuated events with periods 100 ms to several secs
- Longer temporal expectations (> few secs)

Metrical and nonmetrical patterns (cf. tonal \& atonal melodies)

Image removed due to copyright restrictions.
See Fig. 4.8 in Jones and Yee, "Attending to auditory events:
the role of temporal organization." In Thinking in Sound.
Edited by E. Bigand and S. McAdams. New York, NY:
Oxford University Press, 1993. ISBN: 9780198522577.

Jones \& Yee,
Attending to auditory events:
the role of temporal organization
in Thinking in Sound

Temporal reproductions are better for well-formed temporal patterns

Image removed due to copyright restrictions.
See Fig. 4.9 in Jones and Yee, "Attending to auditory events:
the role of temporal organization." In Thinking in Sound.
Edited by E. Bigand and S. McAdams. New York, NY:
Oxford University Press, 1993. ISBN: 9780198522577.

Higher-order (longer-range) metrical patterns

Image removed due to copyright restrictions.
See Fig. 4.7 in Jones and Yee, "Attending to auditory events:
the role of temporal organization." In Thinking in Sound.
Edited by E. Bigand and S. McAdams. New York, NY:
Oxford University Press, 1993. ISBN: 9780198522577.

Hierarchical \& nonhierarchical ratios of event timings

Image removed due to copyright restrictions.
See Fig. 4.10 in Jones and Yee, "Attending to auditory events:
the role of temporal organization." In Thinking in Sound.
Edited by E. Bigand and S. McAdams. New York, NY:
Oxford University Press, 1993. ISBN: 9780198522577.

Clock \& hierarchical models of beat perception

Image removed due to copyright restrictions.
See Fig. 4.11 in Jones and Yee, "Attending to auditory events:
the role of temporal organization." In Thinking in Sound.
Edited by E. Bigand and S. McAdams. New York, NY:
Oxford University Press, 1993. ISBN: 9780198522577.

Mechanisms of timing and temporal processing

- Temporal contiguity models of learning
- Clock models
- Switched accumulator, e.g. hourglass
- Explicit measurement of time durations
- Ordering of durations by magnitude
- Time delay detectors/generators
- Array of tuned delay elements, detectors, oscillators
- Explicit measurement of time durations; storage of patterns
- Generators of time delays (timers)
- Rhythmic hierarchies (Jones)
- well-formed patterns create strong expectations
- Temporal memory trace
- Timeline of events stored in reverberating memory
- Cylcochronism (Popov, see Fraisse, memory store is itself temporal)
- Readout of events \& (timing of) their consequences

Warren:
 Holistic \& analytic sequence recognition

holistic:
temporal
compounds (cohere into unified patterns)

analytic:
explicit ID of elements and orders

Image removed due to copyright restrictions.
See Fig. 3.2 in Warren, "Perception of acoustic sequences: global integration vs. temporal resolution." In Thinking in Sound.
Edited by E. Bigand and S. McAdams. New York, NY: Oxford University Press, 1993. ISBN: 9780198522577.

Timescale similarities \& differences of temporal processing

- On all timescales:
- mechanisms for internalizing timecourses of events, for building up temporal patterns
- Differences between timescales
- Pitch: support of multiple patterns (pitch mechanism low harmonics) => temporal "transparency", non-interference
- Rhythm: interference between patterns unless separated into different streams
- another way of thinking about this is that for rhythm stream formation mechanism is not based on periodicity alone

Licklider's (1951) duplex model of pitch perception

Time-delay nets

Figure by MIT OpenCourseWare.

Licklider's binaural triplex model

Image removed due to copyright restrictions.

Frequency

Cochlea
Figure by MIT OpenCourseWare.
J.C.R. Licklider (1959) "Three

AuditoryTheories" in Psychology: A Study of a Science, Vol. 1, S. Koch, ed., McGrawHill, pp. 41-144.

Neural timing nets

FEED-FORWARD TIMING NETS

- Temporal sieves
- Extract (embedded) similarities
- Multiply autocorrelations

RECURRENT TIMING NETS

- Build up pattern invariances
- Detect periodic patterns
- Separate auditory objects

Is a time-domain strategy possible?
Effect of different FOs in the time domain

Vowel [ae]
 F0 = 100 Hz

Vowel [er]
$\mathrm{F0}=125 \mathrm{~Hz}$

Auditory "pop-out" phenomena suggest a period-by-period

transient disparity

Waveform

FO = 100; Harmonics 1-8 $\Delta 4$ th harmonic

Phase transient (pi/4)

Amplitude transient (2 dB)

Mistuned harmonic (12\%)

Deviation from periodic pattern

Figure by MIT OpenCourseWare.

Periodic patterns invariably build up in delay loops whose recurrence times equals the period of the pattern and its multiples.

Revised buildup rule:
Min(direct, circulating) plus a fraction of their absolute difference

Source: Cariani, P. "Neural Timing Nets."

A Pattern in 10 ms delay loop

Neural Networks 14 (2001): 737-753. Courtesy Elsevier, Inc., |http://www.sciencedirect.com. Used with permission.

Signals

Error-adjustment rule:

$$
\mathrm{H}(\mathrm{t})=\mathrm{H}(\mathrm{t}-\mathrm{tau})+\mathrm{B}_{\mathrm{tau}}[\mathrm{X}(\mathrm{t})-\mathrm{H}(\mathrm{t}-\mathrm{tau})]
$$

Loop-dependent scaling of adj rate:

$$
\mathrm{B}_{\mathrm{tau}}=\mathrm{tau} / 33 \mathrm{~ms}
$$

F. RESPONSE OF RECURRENT TIMING NET

RESPONSE OF RECURRENT TIMING NET

Output of 10 ms loop

Original individual vowels

Correlations of loop outputs to individual vowels

Correlations between autocorrelations
Thick: 10 ms loop waveform vs. /ae/
Thin: 8.9 ms loop waveform vs. /er/

Tonal \& rhythmic contexts

Tonality induction:
establishment of a tonic
establishment of tonal system: key, mode, set of pitches establishment of harmonic relations

Western tonal music:
Relations of notes to the tonic
Relations of notes to the triad that defines the key (I)
harmonic center
Relations of chords to I triad \& tonic -- chord progressions
Distance in perceptual similarity
Tension-resolution + movement between the two
Relations of different keys and key modulations
Movements between keys, tension-resolution, larger structures \& rhythms of harmonic movement

Build-up and separation of two auditory objects

Two vowels with different fundamental frequencies (F0s) are added together and passed through the simple recurrent timing net. The two patterns build up In the delay loops that have recurrence times that correspond to their periods.

Vowel [ae]
F0 = 100 Hz
Period $=10 \mathrm{~ms}$

Vowel [er] F0 = 125 Hz
Period = 8 ms

Fragment from G. Ligeti's Musica Ricercata

This image is from the article Cariani, P. "Temporal Codes, Timing Nets, and Music Perception." Journal of New Music Research 30, no. 2 (2001): 107-135. DOI: 10.1076/jnmr.30.2.107.7115.
This journal is available online at http://www.ingentaconnect.com/content/routledg/jnmr/

Fragment from G. Ligeti's Musica Ricercata -

Autocorrelogram

Recurrent timing net

This image is from the article Cariani, P. "Temporal Codes, Timing Nets, and Music Perception."
Journal of New Music Research 30, no. 2 (2001): 107-135. DOI: 10.1076/jnmr.30.2.107.7115.
This journal is available online at http://www.ingentaconnect.com/content/routledg/jnmr/

Autocorrelogram

This image is from the article Cariani, P. "Temporal Codes, Timing Nets, and Music Perception." Journal of New Music Research 30, no. 2 (2001): 107-135. DOI: 10.1076/jnmr.30.2.107.7115.
This journal is available online at|http://www.ingentaconnect.com/content/routledg/jnmr/

Autocorrelogram

Profile of mean signal values in delay channels

Recurrent timing net

Ligeti envelope (fragment end)

Response of a recurrent timing network to the
Ligeti fragment. $H(j, i+j)=\max (X(1, i), X(1, i) * H(1, i) *(1+j / 100))$ where X is the in envelope of the Ligeti fragment, and H is the value of the signal in delay loop j (firs index) at time t (second index). The buildup factor ($1+j / 100$) depends on the duration of the delay loop (i.e. equal to j samples). The mean signal value H in the delay channels over the last 200 samples (thicker line) and over the whole fragment (thin line) are shown in the top right line plot. The waveforms that are built up in the three most activated delay loops are shown above. The results, not surprisingly resemble those obtained with the running autocorrelation. The sampling rate of the signal was approximately 10 Hz .

This image is from the article Cariani, P. "Temporal Codes, Timing Nets, and Music Perception."
Journal of New Music Research 30, no. 2 (2001): 107-135. DOI: 10.1076/jnmr.30.2.107.7115.
This journal is available online at|http://www.ingentaconnect.com/content/routledg/jnmr/

MIT OpenCourseWare
http://ocw.mit.edu

HST. 725 Music Perception and Cognition

Spring 2009

For information about citing these materials or our Terms of Use, visit: |http://ocw.mit.edu/terms.

[^0]: Source: Snyder, J. S., and E. W. Large. "Gamma-band Activity Reflects the Metric Structure of Rhythmic Tone Sequences." Cog Brain Res 24 (2005):
 117-126. Courtesy Elsevier, Inc., |http://www.sciencedirect.com.
 Used with permission.

[^1]: Figure 3.5
 Acoustical grouping.
 Source: Snyder, Bob. Music and Memory.
 Cambridge, MA: MIT Press, 2000. Courtesy of MIT Press.
 Used with permission.

[^2]: Source: Snyder, Bob. Music and Memory.
 Cambridge, MA: MIT Press, 2000. Courtesy of MIT Press.
 Used with permission.

