
HST.584 / 22.561 Problem Set #4 Solutions
 

Figure & Fourier Transform proofs courtesy Mark Khachaturian 

 
Marking Scheme: Question 1 – 4 points, Question 2 – 3 points, Question 3 – 3 points 
 
1-a) The question alludes to a spin echo sequence.  One possible implementation is: 
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Shift Theorem:  ( ){ } ( ) ( )bkaki
yx

yxekkGbyaxgF +−=−− π2,,  
 
 ( ){ } ( ) ( )∫∫ +−−−= dxdyebyaxgbyaxgF ykxki yxπ2,,  
 
 Substituting  

byv
axu

−=
−=

 

 gives 
 

( ) ( ) ( )

( ) ( )bkaki
yx

bkakivkuki

yx

yxyx

ekkG

dudveevug
ab

+−

+−+−

=

= ∫∫
π

ππ

2

22

,

,1
 

 
 
Parseval’s Theorem:  ( ) ( )∫∫∫∫ = yxyx dkdkkkGdxdyyxg
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Convolution Theorem:  ( ) ( ){ } ( ) ( )yxyxyx kkHkkGdadbbyaxhbagF ,,,,, =−−∫∫  
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 Using the shift theorem 
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Fourier Integral Theorem:  ( ){ } ( ){ } ( )yxgyxgFFyxgFF ,,, 11 == −−  
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3-a) In general, possible sources of inhomogeneities include main field inhomogeneities, 
susceptibility-induced variations and chemical shift effects to name a few.  T2* decay is a 
consequence of inhomogeneity (enhanced dephasing of spins within a given voxel) – this 
decay can both darken and blur an image.  In the frequency encode direction, 
inhomogeneities can cause shifts in the image domain.  In the phase encode direction, our 
image can acquire phase (although we can eliminate this by taking the magnitude of our 
image).  We see this by writing our signal equation: 

∫∫ −+−= dxdytyxiytkxtkiyxmts Eyx )),(exp(]))()([2exp(),()( ωπ  

where ωE represents the spatially dependent frequency effects due to any inhomogeneity.  
If we take m(x,y) to be a point object, we can track these effects more readily.  Also, 
recall that in 2DFT we apply gradient Gy for some fixed interval ty for phase encoding 
and Gx for a continuous time t during frequency encoding.  Therefore: 
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where (x0,y0) is the location of our delta function object, γωEyxE =),( 00 , and φ0 is any 
extra phase accrued during the phase encode interval due to the inhomogeneity (note that 
it is not a function of time).   
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So, our object positioned at (x0,y0) will instead be mapped to (x0 + E(x0,y0)/Gx,y0) with 
some extra phase factor added on to the image. 
 
b) For the chemical shift, E(x0,y0) = ωCS = σB0.  Therefore, our image will appear at (x0 + 
σB0 / Gx, y0); in other words, for this type of imaging, the chemical shift will affect only 
the x-position and not the y-position.  From the expression, we can see that we could 
reduced the chemical shift effect by increasing our gradient amplitude. 


