HST. 584 / 22.561 Problem Set \#1 Solutions

Marking Scheme: Question 1 - 3.5 points, Question 2 - 3 points, Question 3 - 3.5 points General Comments: Watch out for radians! Angles should be expressed in radians and γ adjusted between linear and angular units accordingly (${ }^{\text {i.e. }} \mathrm{Hz}$ vs rad / s)

$$
\begin{aligned}
1-\mathrm{a}) & B_{1}
\end{aligned}=\frac{\theta}{T \gamma} \quad \text { for } \theta=\pi / 2, \mathrm{~T}=1 \mathrm{~ms}, \gamma=2 \pi * 43 \times 10^{6} \mathrm{rad} / \mathrm{s} / \mathrm{T}
$$

This is 6 orders of magnitude smaller than a typical B_{O}.
1-b) $B_{1}=\frac{\mu_{0} N I}{2 r}$ for a short solenoid.
Rearranging, we can calculate $\mathrm{I}=0.462$ A to produce our desired field. To estimate power, we need to estimate resistance (only a resistive element causes power loss - can't dissipate power through an inductance). Let's pick copper ($\rho=1.56 \times 10^{-8} \Omega \mathrm{~m}$) with a circular cross-section of 2 mm (maybe a little small for the current we're pushing, but good enough for an order of magnitude estimate).
$R=\frac{\rho L}{A} \quad$ where L is the total length of wire (4 turns * circumference $=5.03 \mathrm{~m}$)
$R=0.025 \Omega$
$P=I^{2} R=5.33 m W$ for an estimate
1-c) $B_{\text {eff }}$ is the vector sum of B_{1} and our off-resonance contribution.
Off resonance $=B_{O}-\omega_{\text {rot }} / \gamma=0.1163 m T$.
So $B_{\text {eff }}=0.1163 \hat{z}+5.81 \times 10-3 \hat{x} \quad \mathrm{mT}=0.116 \mathrm{mT}$ at 2.9° tilt off the z-axis. $\theta=\gamma B_{\text {eff }} T=31.3 \mathrm{rad}=5$ rotations around $\mathrm{B}_{\text {eff }}=$ NOT A 90° pulse!

2-a) $\gamma_{\mathrm{e}}=2.8 \times 10^{10} \mathrm{~Hz} / \mathrm{T}$. At 1.5 T, $v=42.0 \mathrm{GHz}$. Is this practical? On chemical samples yes - ESR is a common technique. However, this frequency is in the microwave range, so this is not practical for humans \rightarrow will potentially have a great deal of energy deposition in your subject (this is BAD!)

2-b) In 1.5 T NMR experiment, our Larmor frequency is 64.5 MHz . To generate 64.5
MHz in an ESR experiment, we need a 2.3 mT field ($B=\frac{v}{\gamma}$).
2-c) Using our expression from 1-a, we can calculate that we would a $\mathrm{B}_{1}=8.93 \times 10^{-7} \mathrm{~T}$ to generate the desired RF pulse.

3-a) $\frac{n_{\downarrow}}{n_{\uparrow}}=\exp \left(-\frac{\gamma B h}{K_{B} T}\right)$ is the expression for the difference in spin population levels based on a Boltzmann distribution (again, watch your units for γ and h - if you use one in angular form, they both must in angular form).

Field Strength (T)	Ratio for ${ }^{\mathbf{1}} \mathbf{H}$	Ratio for ${ }^{\mathbf{1 3}} \mathbf{C}$
7.0	0.99995	0.99999
3.0	0.99998	0.999999
1.5	0.99999	0.999997

So net magnetization increases with field strength, but we are still dealing with incredibly small signals!
$3-b)$ If we re-arrange our initial expression, to get 1:2 ratio of spins, we need temperatures of 20.6 mK for ${ }^{1} \mathrm{H}$ and 5.2 mK for ${ }^{13} \mathrm{C}$.

3-c) For ${ }^{1} \mathrm{H}$, we'd need a field of $9.84 \times 10^{4} \mathrm{~T}$ to attain a $1: 2$ ratio of spins. For ${ }^{13} \mathrm{C}$, we'd need a field of $3.95 \times 10^{5} \mathrm{~T}$. Clearly, these are not attainable fields in a laboratory setting.

