HST.584 / 22.561 Problem Set #1 Solutions

Marking Scheme: Question 1 - 3.5 points, Question 2 - 3 points, Question 3 - 3.5 points General Comments: Watch out for radians! Angles should be expressed in radians and γ adjusted between linear and angular units accordingly (^{i.e.} Hz vs rad / s)

1-a)
$$B_1 = \frac{\theta}{T\gamma}$$
 for $\theta = \pi/2$, T = 1 ms, $\gamma = 2\pi * 43 \times 10^6$ rad/s/T $B_1 = 5.81 \times 10^{-6} T$

This is 6 orders of magnitude smaller than a typical B₀.

1-b)
$$B_1 = \frac{\mu_o NI}{2r}$$
 for a short solenoid.

Rearranging, we can calculate I = 0.462 A to produce our desired field. To estimate power, we need to estimate resistance (only a resistive element causes power loss – can't dissipate power through an inductance). Let's pick copper ($\rho = 1.56 \times 10^{-8} \Omega m$) with a circular cross-section of 2 mm (maybe a little small for the current we're pushing, but good enough for an order of magnitude estimate).

$$R = \frac{\rho L}{A}$$
 where L is the total length of wire (4 turns * circumference = 5.03m)
$$R = 0.025\Omega$$

$$P = I^2 R = 5.33 mW$$
 for an estimate

1-c) B_{eff} is the vector sum of B_1 and our off-resonance contribution. Off resonance $= B_o - \omega_{rot} / \gamma = 0.1163 mT$.

So $B_{eff} = 0.1163 \hat{z} + 5.81 \times 10^{-3} \hat{x}$ mT = 0.116 mT at 2.9° tilt off the z-axis. $\theta = \gamma B_{eff} T = 31.3 rad = 5$ rotations around $B_{eff} = NOT A 90^{\circ}$ pulse!

2-a) $\gamma_e = 2.8 \times 10^{10} \text{ Hz} / \text{T}$. At 1.5 T, $\nu = 42.0 \text{ GHz}$. Is this practical? On chemical samples yes – ESR is a common technique. However, this frequency is in the microwave range, so this is not practical for humans \rightarrow will potentially have a great deal of energy deposition in your subject (this is BAD!)

2-b) In 1.5 T NMR experiment, our Larmor frequency is 64.5 MHz. To generate 64.5 MHz in an ESR experiment, we need a 2.3 mT field ($B = \frac{v}{r}$).

2-c) Using our expression from 1-a, we can calculate that we would a $B_1 = 8.93 \times 10^{-7} \text{ T}$ to generate the desired RF pulse.

3-a) $\frac{n_{\downarrow}}{n_{\uparrow}} = \exp(-\frac{\gamma Bh}{K_B T})$ is the expression for the difference in spin population levels based

on a Boltzmann distribution (again, watch your units for γ and h – if you use one in angular form, they both must in angular form).

Field Strength (T)	Ratio for ¹ H	Ratio for ¹³ C
7.0	0.99995	0.99999
3.0	0.99998	0.999995
1.5	0.99999	0.999997

So net magnetization increases with field strength, but we are still dealing with incredibly small signals!

3-b) If we re-arrange our initial expression, to get 1:2 ratio of spins, we need temperatures of 20.6 mK for 1 H and 5.2 mK for 13 C.

3-c) For ¹H, we'd need a field of 9.84 x 10^4 T to attain a 1:2 ratio of spins. For ¹³C, we'd need a field of 3.95 x 10^5 T. Clearly, these are not attainable fields in a laboratory setting.