HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

HST.583: Functional Magnetic Resonance Imaging: Data Acquisition and Analysis, Fall 2008 Harvard-MIT Division of Health Sciences and Technology Course Director: Dr. Randy Gollub.

MR physics and safety for fMRI

Lawrence L. Wald, Ph.D.

MGH

Massachusetts General Hospital Athinoula A. Martinos Center

Fast MR Imaging Techniques

- Why, introduction
- How: Review of k-space trajectories Different techniques (EPI, Spiral)
- Problems from B0 Susceptibility artifacts

Why fast imaging

Capture time course, (e.g. hemodynamic) eliminate artifact from motion (during encode.)

Magnetization vector durning MR

Review of Image encoding, journey through kspace

Two questions:

1) What does blipping on a gradient do to the water magnetization.

 Why does measuring the signal amplitude after a blip tell you info about the spatial frequency composition of the image (k-space).

 $G_{r} = \partial B_{z} / \partial x$

Step two: encode spatial info. in-plane

"Frequency encoding"

$$\mathbf{v} = \gamma \mathbf{B}_{\text{TOT}} = \gamma (\mathbf{B}_{o} + \mathbf{G}_{x} \mathbf{x})$$

How does blipping on a grad. encode spatial info?

 $\upsilon(\mathbf{y}) = \gamma \mathbf{B}_{\mathsf{TOT}} = \gamma \mathbf{B}_{\mathsf{o}} \Delta \mathbf{y} \mathbf{G}_{\mathsf{y}}$ θ (\mathbf{y}) = υ(\mathbf{y}) \tau = \gamma \mathbf{B}_{\mathsf{o}} \Delta \mathbf{y} (\mathbf{G}_{\mathsf{y}} \tau)

How does blipping on a grad. encode spatial info?

 θ (**y**) = υ (**y**) τ = γ **B**_o Δ **y** (**G**_y τ)

after RF

After the blipped y gradient...

How does blipping on a grad. encode spatial info?

The magnetization vector in the xy plane is wound into a helix directed along y axis.

Phases are 'locked in' once the blip is over.

The bigger the gradient blip area, the tighter the helix

What have you measured? Consider 2 samples:

Frequency and phase encoding are the same principle!

one excitation, one line of kspace...

Image encoding,

"Journey through kspace"

The Movie...

one excitation, one line of kspace...

Bandwidth is asymmetric in EPI

- Adjacent points in k_x have short ∆t = 5 us (high bandwidth)
- Adjacent points along ky are taken with long Δt (= 500us). (low bandwidth)

The phase error (and thus distortions) are in the phase encode direction.

Characterization of EPI performance

length of readout train for given resolution or echo spacing (esp) or freq of readout...

What is important in EPI performance?

Short image encoding time.

Parameters related to total encoding time: 1) echo spacing. 2) frequency of readout waveform.

Key specs for achieving short encode times:1) gradient slew rate.2) gradient strength.

3) ability to ramp sample.

Good shimming (second order shims)

Susceptibility in MR

The good.

The ugly.

Enemy #1 of EPI: local susceptibility gradients

B_o field maps in the head

Enemy #1 of EPI: local susceptibility gradients

B_o field maps in the head

What do we mean by "susceptibility"?

In physics, it refers to a material's tendency to magnetize when placed in an external field.

In MR, it refers to the effects of magnetized material on the image through its local distortion of the static magnetic field B_o .

Ping-pong ball in water...

Susceptibility effects occur near magnetically dis-similar materials

Field disturbance around air surrounded by water (e.g. sinuses)

Field map (coronal image) 1_5T

Bo map in head: it's the air tissue interface...

Sagittal Bo field maps at 3T

Susceptibility field (in Gauss) increases w/ B_o

Ping-pong ball in H_20 : Field maps ($\Delta TE = 5ms$), black lines spaced by 0.024G (0.8ppm at 3T)

1.5T

3T

Other Sources of Susceptibility You Should Be Aware of...

Those fillings might be a problem... Wald, fMRI MR Physics

Local susceptibility gradients: 2 effects

1) Local dephasing of the signal (signal loss) within a voxel, mainly from <u>thru-</u> plane gradients

2) Local geometric distortions, (voxel location improperly reconstructed) mainly from local <u>in-plane</u> gradients.

1) Non-uniform Local Field Causes Local Dephasing

Local susceptibility gradients: hru-plane dephasing in grad echo EPI

Bad for thick slice above frontal sinus...

Orbitofrontal susceptibility region

Solution: high resolution

1mm isotropic TE=30ms, GRAPPA =2 6/8 part-Fourier

Minimal OFC drop-out issues with 3T 1mm isotropic

Thru-plane dephasing gets worse at longer TE

Orbitofrontal susceptibility region

3T, TE = 21, 30, 40, 50, 60ms

Problem #2 Susceptibility Causes Image Distortion in EPI

To encode the image, we control phase evolution as a function of position with applied gradients.

Local suscept. Gradient causes unwanted phase evolution.

The phase encode error builds up with time. $\Delta \theta = \gamma B_{local} \Delta t$

usceptibility Causes Image Distortion

Conventional grad. echo, $\Delta\theta \alpha$ encode time α 1/BW

Susceptibility in EPI can give either a compression or expansion

Altering the direction kspace is transversed causes either local compression or expansion.

choose your poison...

3T whole body gradients

Susceptibility Causes Image Distortion

Echoplanar Image, $\Delta \theta \alpha$ encode time α 1/BW

Field near sinus Wald, fMRI MR Physics

Encode time = 34, 26, 22, 17ms

Spirals

Susceptibility:	distortion, dephasing	blurring, dephasing
Eddy currents:	ghosts	blurring
k = 0 is sampled: 1/2 through 1st		
Corners of kspace:	yes	no
Gradient demands:	very high	pretty high

Wald, fMRI MR Physics

 B_0

Nasal Sinus + mouth shim

 B_0

Effect of Ear & Mouth Shim on EPI

Courtesy of Peter Jezzard. Used with permission.

With fast gradients, add parallel imaging

Using the detector array to encode image

Wald, RSNA 2007

A.A. Martinos Center, MGH Radiology

90 Channel Uncombined Images

Wald, RSNA 2007

A.A. Martinos Center, MGH Radiology

Parallel acquisition: noise penalties Calculating the g-factor map

coil sensitivity profiles

Gmax=2.17

1/G-factor, 2D Acceleration

3D encoding power of the array: eigenmodes of the sensitivity maps

Analysis following: Univ. Würzburg

Breuer et al. ISMRM 2005 p2668

> The 90ch coil still has significant components over 32ch.

(iPAT) GRAPPA for EPI susceptibility

3T Trio, MRI Devices Inc. 8 channel array b=1000 DWI images

iPAT (GRAPPA) = 0, 2x, 3x

Fast gradients are the foundation, but EPI still suffers distortion

Encoding with RF...

4 fold acceleration of single shot submillimeter SE-EPI: 23 channel array

23 Channel array at 1.5T

With and without 4x Accel.

Single shot EPI, 256x256, 230mm FOV TE = 78ms

Extending the phased array to more channels: 23 channel "Bucky" array for 1.5T

■<u>9 Fold</u> GRAPPA acceleration 3D FLASH 9 minute scan down to 1 minute...

23 Channel array at 1.5T Can speed up encoding by *an order of magnitude!*

3D Flash, 1mm x 1mm x 1.5mm, 256x256x128

32 channel coil improves fMRI

12 channel coil

1 run

3 run

5 run

1 run

3T Retinotopic mapping

Wald, Beijing 2008

Triantafyllou, Hinds, MIT

96 ch 3T

A.A. Martinos Center, MGH Radiology

3T SNR Maps

96 Ch

32 Ch

12 Ch

3T SNR Profiles

Questions, comments to:

Larry Wald