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Chapter 5 - SAMPLING IN TIME AND FREQUENCY

©c Julie Greenberg and Bertrand Delgutte, 1999

Introduction

In previous chapters, we studied how discrete-time signals can be obtained by sampling continuous-
time signals, and then considered the design and analysis of digital filters in both the time and
frequency domains. This chapter considers the operation of sampling in more detail. In par-
ticular, we will study the operations of both sampling in time and sampling in frequency, and
examine the effects of sampling in one domain on the representation of the signal in the other
domain. Using the concept of sampling, we will establish the relationships between the different
Fourier transforms (CTFT, DTFT, CTFS, DFS, DFT). Finally, we will consider two important
applications of sampling; implementing continuous-time LTI systems with digital filters is based
on sampling in time, while spectral analysis is based on sampling in frequency.

5.1 Sampling in time

5.1.1 Discrete-time signals as special continuous-time signals

Before discussing sampling in time, it is useful to establish an additional relationship between
discrete-time signals and continuous-time signals. In particular, discrete-time signals can be
considered as a special case of continuous-time signals, specifically, a weighted sum of impulses
spaced at regular intervals. To see this, consider a discrete-time signal x[n] with DTFT X(f),
and define the continuous-time signal xs(t) as a sum of shifted impulses weighted by the values
of x[n]:

∞
xs(t) =

� ∑
x[n]δ(t− nTs) (5.1)

n=−∞
The CTFT of this signal is

∞ ∞
Xs(F ) =

∫
x[n]δ(t − nTs) e−j2πF tdt

−∞

[
n=−∞

]∑
∞ ∞

= x[n] δ(t nTs)e−j2πF tdt
n=

∑
−∞

[∫
−

−∞

]
∞

=
∑

x[n]e−j2πFnTs = X(f)
n=

|f=FTs= F

−∞
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Thus, when xs(t) and x[n] are related as in (5.1), the CTFT of xs(t) is identical to the DTFT
of x[n]. Because the relation between a signal and its transform is unique, this means that x[n]
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and xs(t) can be considered as different representations of the same signal. In other words,
one interpretation of discrete-time signals is as the weighted sum of continuous-time impulses,
δ(t− nTs), spaced at regular intervals equal to the sampling period.

5.1.2 Summary of sampling in time

The operation of sampling a continuous-time signal is equivalent to multiplication with a periodic
impulse train, followed by conversion from continuous-time impulses to discrete-time impulses.
Figure 1(a) shows an arbitrary continuous-time signal bandlimited to W , x(t), and a represen-
tation of its CTFT, X(F ). Figure 1(b) shows the sampling function p(t) with sampling period
Ts = 1 PF , and its CTFT, (F ). The sampling function is

s

∞
p(t) =

∑
δ(t− nTs)

n=−∞

and its CTFT is (3.20l)
∞

P (F ) = Fs

∑
δ(F − kFs).

k=−∞

Figure 1(c) shows the sampled signal in continuous time, xs(t) = x(t)p(t), where the sampled
signal is simply the product of the original signal and the sampling function p(t). Sampling a
signal in time corresponds to forming a periodic signal in frequency. This can be understood
as a result of the product theorem and the above observation, based on Eq. (3.20l), that the
transform of a periodic impulse train in time is a periodic impulse train in frequency. From the
product theorem, multiplication in the time domain corresponds to convolution in the frequency
domain. Therefore, sampling (multiplication by a periodic impulse train) in time corresponds
to forming a periodic signal (convolution with a periodic impulse train) in frequency. We can
show that the sampled signal in the frequency domain consists of shifted replicas of the original
CTFT, scaled by the sampling frequency, as given by

Xs(F ) = X(F ) ∗ P (F )

=
∫ ∞ ∞ ∞

X(φ)P (F − φ) dφ = Fs
−∞

∫
X(φ)

−∞ k=

∑
δ(F − φ− kFs) dφ

−∞
∞

= Fs

k=

∑
X(F − kFs). (5.2)

−∞

Figure 1(d) shows the final step in sampling which consists of converting the sampled, continuous-
time signal xs(t), to the discrete-time signal, x[n]. This step does not correspond to any physical
operation performed on the signal, rather, it is a conceptual step. It is based on the relationship
described in Eq. (5.1) and allows substitution of the discrete-time index, n, for the continuous-
time index t. The time index t = 0, Ts, 2Ts, . . . becomes n = 0, 1, 2, . . . and correspondingly, the
frequency axis is scaled by Ts. This converts the CTFT in Fig. 1(c) to the DTFT in Fig. 1(d).
The DTFT is periodic with period 1, as expected.
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5.1.3 Nyquist’s sampling theorem revisited

The Nyquist sampling theorem states that, if a continuous-time signal x(t) is such that its
spectrum X(F ) is zero for |F | > W , then it can be exactly reconstructed from samples taken at
a frequency Fs > 2W . This reconstruction is accomplished using the interpolation formula

∞ sin
x(t) =

n=

∑ πFs(t )
x nTs)

− nT
( s

−∞
(5.3)

πFs(t− nTs)

where Ts = 1
F . In the Appendix to Chapter 1, a proof of this theorem for periodic signals was

presented and
s

then extended to non-periodic signals. In the following discussion, a direct proof
for non-periodic signals is given based on our understanding of the sampling operation in both
the time and frequency domains.

Equation (5.2) and its representation in Fig. 1(c) show that frequency aliasing is avoided if the
sampling rate exceeds twice the highest frequency component in x(t), that is, if Fs = 1 >T 2W .
When this condition is satisfied, there is no overlap between theX(F−kFs), which are fre

s

quency-
translated versions of X(F ), and therefore, over the range −Fs F2 ≤ ≤ Fs

2 we have exactly

F
Xs(F ) = FsX(F ) for |F | ≤ s

.
2

As shown in Figure 2, we can reconstitute the original signal by lowpass filtering xs(t) to keep
only frequencies below Fs for which the spectra of the two signals xs(t) and x t2 ( ) are the same
within a multiplicative constant:

1
X(F ) = Xs(f) ΠF

F
s

s
(F ) (5.4)

2

Using
∞

xs(t) = x(nTs)δ(t nTs),
n=

∑
−

−∞

which comes from Eq. (5.1) together with the definition of sampling, x[n] = x(nTs), we take the
inverse transform of Eq. (5.4). Making use of the convolution theorem and of Eq. (3.20h) for
the inverse CTFT of an ideal lowpass filter (rectangle in frequency) yields

1
x(t) =

sinπF
xs(t)

Fs
∗ st

∞
=

πt

[
n=

∑
x(nTs)δ(t − nTs)

−∞

]
sinπF∗ st

πFst

∞ sin
=

n=

∑ πF
x(nTs)

s(t− nTs)

−∞
. (5.5)

πFs(t− nTs)

But Eq. (5.5) is the same as Eq. (5.3), which completes the proof of the sampling theorem.
This reconstruction of the continuous-time signal by lowpass filtering of the sampled signal is
illustrated in Fig. 2.
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5.2 Sampling in frequency

5.2.1 Summary of sampling in frequency

Like sampling in time, sampling in frequency is equivalent to multiplication with a periodic
impulse train, followed by conversion from continuous impulses to discrete impulses. Figure 3(a)
shows an x1[n], an arbitrary discrete-time signal of duration N0, and X1(F ), a representation
of its DTFT. Figure 3(b) shows the frequency sampling function P (f) with sampling period 1

N ,
and its representation in the time domain, p[n]. P (f) and p[n] are related by the DTFT pair
(3.12m)

∞
p[n] = δ

r=

∑
[n − rN ]

−∞
and

1
P (f) =

∞

N
k=

∑ k
δ(f −

−∞
).

N

Figure 3(c) shows the signal after sampling in frequency. In the frequency domain, the sampled
signal is simply the productX1(f)P (f). Sampling a signal in frequency corresponds to forming a
periodic signal in time. This results from the convolution theorem and the fact that the transform
of a periodic impulse train in frequency is a periodic impulse train in time, analogous to the
corresponding observation made above for sampling in time. Using the convolution theorem, we
can show that the frequency-sampled signal in the time domain is given by

∞ ∞ ∞
x1[n] ∗ p[n] =

∑
x1[k]p[n − k] =

∑
x1[k]

∑
δ[n − k − rN ] (5.6)

k=−∞ k=−∞ r=−∞
∞

=
∑

x1[n− rN ]. (5.7)
r=−∞

As expected, the result of sampling in frequency has been to create a signal that is periodic
in time. Time aliasing is avoided if the spacing of impulses in time is at least the duration of
the time domain signal, that is, N ≥ N0. When this condition is satisfied, there is no overlap
between adjacent copies of x1[n− rN ], the time-shifted versions of x1[n].

Figure 3(d) shows the conversion to discrete frequency representation using the discrete fre-
quency index k. Like the similar transformation performed between Figs. 1(c) and (d), this does
not correspond to any physical operation on the signal, but is a conceptual step that consists of
rescaling the time and frequency axes. Defining the frequency samples X1[k] to be the values of
the frequency-sampled signal at k = fN ,

1
X1[k] =

�
X1(f)P (f) = X1(f)

∞

N
k=

∑ k
δ(f −

−∞
) (5.8)

N

1
=

k
X1(

N
). (5.9)

N

These relationship between these time and frequency samples is governed by the discrete Fourier
series (DFS), which applies to signals that are discrete and periodic in time, and results in a
representation that is also discrete and periodic in frequency.

4
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5.2.2 The discrete Fourier transform (DFT)

The discrete Fourier transform (DFT) is covered in detail in Chapter 4. It is presented here
because one important interpretation of the DFT is as frequency samples of the DTFT. As seen
in the previous section, the discrete Fourier series (DFS) can also be interpreted as frequency
samples of the DTFT. The difference between the two is that the DFS applies to periodic signals,
while the DFT applies to finite signals. The DFS corresponding to a particular DFT pertains
to the periodic signals formed by replicating the finite signals at regular intervals. Or, looking
at it from the other direction, the DFT is defined as one period of the DFS.

Using the frequency sampled signals defined in the previous section, the DFT is defined as one
period the DFS in both time and frequency on the interval [0, N − 1] with all other values to
zero, that is {

x1[n] ∗ p[n] n = 0, . . . , N
x2[n] =

− 1
0 otherwise

and
X [k] k = 0, . . . , N 1

X2[k] =

{
1 −

0 otherwise.

A representation of the DFT as one period of the DFS is shown in Fig. 3(e).

The usefulness of the DFT arises from the fact that, using digital computers, it is not generally
possible to compute the DTFT of a signal, because we cannot represent the continuous-frequency
variable f without performing an infinite number of operations. Instead, we can compute a
finite number of frequency samples of the DTFT. We hope that, if the spacing between samples
is sufficiently small, these frequency samples will provide a good representation of the entire
frequency spectrum represented in the DTFT. This leads to the definition of the N -point DFT,
X[k], of a finite signal x[n] of length N , where we take k samples of its DTFT X(f) at intervals
of 1/N :

X[k] =� X(f)|f= k

∞
=

N
n=

∑
x[n]e−j2πfn

∣
−∞

∣∣∣∣
f= k

N−1

= x[n]e−j2πkn/N for 0
n=0

≤ k ≤ N − 1. (5.10)

N

∑

Because X(f) is periodic with period 1, X[k] is periodic with period N , which justifies only
considering the values of X[k] over the interval [0, N − 1].

5.2.3 The continuous-time Fourier series

In this section, we will show that the continuous-time Fourier series (CTFS) is a special case of
the CTFT, based on sampling in frequency, in the same way that the DTFT is a special case
of the CTFT, based on sampling in time. This is expected because time and frequency play
symmetric roles in the CTFT, we have seen that the DTFT is a periodic, continuous function of
frequency, and we have seen that the CTFS represents signals that are periodic and continuous
in time.

To show this, consider the continuous-time, periodic signal x(t) with period T . This signal can
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be considered as the convolution of one of its periods xT (t) by a periodic impulse train.

∞
x(t) = xT (t) ∗

n=

∑
δ(t − nT ) (5.11)

−∞

where
x(t) if 0 t T

xT (t) =
�

[
≤ ≤

0 otherwise

The CTFT of x(t) is

XT (F ) =
∫ ∞ T

xT (t)e−j2πF tdt =
−∞

∫
x(t)e−j2πF tdt.

0

Using this expression, Eq. (3.20l) and the convolution theorem, we take the transform of
Eq. (5.11) to show that X(F ) is a train of frequency impulses spaced at intervals of 1

T , in
other words that the CTFT of a periodic signal is discrete in frequency:

1
X(F ) = XT (F )

∞

T
k=

∑
δ

−∞

(
k

F − 1
=

T

) ∞

T
k=

∑ k
XT (

−∞

k
)δ
T

(
F −

∞
=

T

)
k=

∑
Xkδ

−∞

(
k

F −
T

)

where we have defined

1
Xk =

� k
XT
T

(
1

=
T

)
j

T

∫ T

x(t)e− 2πkt/Tdt (5.12)
0

The Xk given in Eq. (5.12) are the Fourier series coefficients of the periodic signal x(t). The
signal x(t) can be expressed as a function of the Xk by writing the inverse CTFT relation:

x(t) =
∫ ∞ ∞

X(F )ej2πF t
∞ k

dF = X
−∞

∫
−∞




=

∑
kδ

−∞

(
F

k

− 2

T

)
j e πF tdF

Interchanging the orders of integration and summation, and applying the definition of the im-
pulse, we obtain the Fourier series expansion of a periodic signal (CTFS), Eq. (1.A.10):

∞
x(t) =

∑
X ej2πkt/T

k .
k=−∞

We give without proof the convolution and product theorems for Fourier series:

1
x(t)©∗ T y(t)←→ XkYk
T

x(t)y(t)←→ Xk ∗ Yk

To summarize, the DTFT and the CTFS are both special cases of the CTFT in which the roles
of time and frequency are interchanged. This is a further example of the duality between the
time and frequency domains.

Cite as: Julie Greenberg, and Bertrand Delgutte. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image
Processing, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on
[DD Month YYYY]. 

6



5.3 Applications

5.3.1 Digital-filter implementation of continuous-time LTI systems

An important consequence of the sampling theorem is that digital filtering and continuous-time
filtering are equivalent for band-limited signals. To show this, consider a continuous-time signal
x(t), and a continuous-time LTI system with impulse response h(t). Assume that both x(t) and
h(t) are bandlimited to W Hz.1 We will show that the system output y(t) = x(t) ∗ h(t) can be
obtained by the following sequence of operations (Fig. 4):

1. Form the discrete-time signal x[n] by sampling x(t) at a frequency Fs > 2W .

2. Sample the impulse response h(t) at the same frequency to form h[n].

3. Compute the discrete-time convolution y[n] = x[n] ∗ h[n].
4. Interpolate y[n] using Eq. (5.3) to form the continuous-time signal yR(t).

It can be shown that
yR(t) = Fsy(t)

To see this, it is easiest to think in the frequency domain (Fig. 5). Because we have assumed that
x(t) and h(t) are bandlimited, their transforms are equal (within the multiplicative constant Fs)
to the transforms of x[n] and h[n], respectively, over the range −Fs f2 ≤ ≤ Fs

2 . Therefore, over
that range, Y (f), the DTFT of y[n], which is the product of H(f) and X(f) is equal to the
spectrum of y(t) multiplied by F 2

s . Using the interpolation formula, yR(t), which is a lowpass
filtered version of y[n], is equal to y(t) times Fs.

The result that continuous-time linear systems can be exactly implemented in discrete-time for
bandlimited inputs does not hold for nonlinear systems. This is because nonlinear systems pro-
duce high-frequency distortion components that can be aliased even if sampling of the original
signal verifies Nyquist’s criterion. For example, Fig. 6 shows that the signal formed by inter-
polation of the output of a squarer implemented in discrete time is not equal to the output of
a continuous-time squarer. Thus, discrete-time implementations of nonlinear continuous-time
systems require oversampling the input signals.

5.3.2 Spectral analysis using the DFT

One major application of frequency sampling is spectral analysis, that is, analyzing the frequency
content of signals. The analysis of an arbitrary discrete-time signal, x[n], consists of two stages,
first windowing and then computing the frequency samples, or DFT. These two operations
are required because using a digital computer, we can only consider signals of finite-duration

1If h(t) is not bandlimited, we can always form a new filter with a bandlimited impulse response by passing
h(t) through an ideal lowpass filter with cutoff frequency W . This will not change the response of the filter to
bandlimited inputs.
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and compute the frequency samples at finite intervals in frequency. Specifically, the windowing
operation is

v[n] = x[n]w[n]

where w[n] is a finite-duration window of length N and equal to zero outside the range 0 ≤ n ≤
N − 1. We obtain frequency samples of the DTFT, at f = k

N :

V [k] = V (f)|f= k

∞
=

N
n=

∑
v[n]e−j2πfn

∣
−∞

∣∣∣∣
f= k

N−1

=
∑
v[n]e−j2πkn/N (5.13)

n=0
N

for k = 0, . . . , N − 1, where we have used definition of the DTFT and the fact v[n] is of finite
duration. Equation (5.13) corresponds to the DFT of the windowed signal v[n], as defined by
Eq. (5.10).

If the discrete-time signal x[n] originally resulted from sampling a continuous-time signal (with
sampling period Ts), then the frequency samples correspond to the continuous-time frequencies,
Fk, given by

k
Fk = .

NTs

For simplicity, we will discuss discrete-time signals. However, the following discussion also applies
to spectral analysis of bandlimited continuous-time signals that have been sampled appropriately.

In order to properly interpret results of our spectral analysis, we must understand the effects of
both windowing and frequency sampling. To gain insight into these effects, we will study the
effects of windowing and frequency sampling for a simple case, the sum of two cosines. We will
consider windowing first.

Effect of windowing

Define the discrete-time signal

x[n] = A0 cos(2πf0n) +A1 cos(2πf1n)

Using (3.12f), its DTFT for the period −1 < f < 1
2 2 is

A
X(f) = 0 A

[δ(f
2

− f0) + δ(f + f0)] + 1 [δ(f − f1) + δ(f + f2 1)].

We will use the rectangular window w[n] of length N ,

1 n = 0, . . . , N 1
w[n] =

{
−

0 otherwise

In the time domain, the windowed signal v[n] is

v[n] = x[n]w[n] =

{
x[n] n = 0, . . . , N − 1
0 otherwise
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In the frequency domain, the product theorem shows that this corresponds to cyclic convolution
with W (f), the DTFT of the rectangular window. Considering only one period on the interval
−1 < f < 1

2 2 yields

V (f) = X(f)©∗W (f) =
∫ 1

2

− 1
X(φ)W (f

2

− φ) dφ (5.14)

=
∫ 1

2

− 1

A

2

(
0 A
[δ(φ

2
− f0) + δ(φ + f0)] + 1 [δ(φ

2
− f1) + δ(φ+ f1)]

)
W (f − φ) dφ(5.15)

A
= 0 A

[W (f
2

− f0) +W (f + f0)] +
1 [W (f − f1) +W (f + f
2 1)]. (5.16)

The DTFT of the windowed signal consists of scaled replicas of the DTFT of the window at the
frequencies of the original cosines.

The implications of the above analysis are best illustrated by an example. Specifically, we will
consider a rectangular window of length N = 64, amplitudes A0 = 1 and A1 = 0.75, and
frequency f0 = 0.1. We will vary f1 to examine the effects of windowing. Figure 7(a) shows
the magnitude of the DTFT of a rectangular window of length N = 64. Figure 7(b) shows
the magnitude of V (f), the DTFT of the windowed sum of cosines, for f1 = 0.3. As predicted
above, the effect of windowing is to produce a scaled replica of the window’s spectrum at the
frequencies of the cosines (f = ±0.1 and f = ±0.3). Figure 7(c)—3(e) shows the magnitude of
V (f) for f1 = 0.15, f1 = 0.12, and f1 = 0.108, respectively. As the frequency f1 approaches f0,
the smearing of the spectrum caused by the window is more detrimental. In Fig. 7(e), the two
distinct frequencies can no longer be resolved.

If a particular frequency resolution is desired, it can be obtained by using a sufficiently long
window. Increasing the length of the window in time corresponds to narrowing the width of its
main lobe in frequency. Figure 8 shows results obtained for the same example as Fig. 7, but
with the window length increased to N = 128. Comparing Fig. 8(a) to Fig. 7(a) verifies that the
longer window does have a narrower main lobe. This results in less smearing of the spectrum
and in successful resolution of the two closely-spaced frequencies in Fig. 8(e).

Effect of frequency sampling

The second stage of spectral analysis consists of computing the frequency samples, that is, the
DFT of the windowed signal. We are really interested in the DTFT of the signal, but due to
computational constraints we are restricted to using the DFT to sample the DTFT at particular
frequencies. This can produce misleading results, as the following example illustrates.

This example again uses the windowed sum of two cosines with amplitudes A0 = 1 and A1 = 0.75
and window length N = 64. Figure 9(c) shows the magnitude of the 64-point DFT for cosines
of frequency f0 = 1 f8 and 1 = 3

16 . Figure 9(d) shows the magnitude of the 64-point DFT for
cosines of frequency f0 = 7 f48 and 1 = 10

48 . Note that the frequency separation is the same in
both examples (f1 − f0 = 1

16 ). But the 64-point DFTs of the two signals are quite different. In
Fig. 9(c), the DFT has strong spectral lines at the frequencies of the two cosines in the signal
and no frequency content anywhere else, while in Fig. 9(d) the DFT exhibits significant spectral
smearing, consistent with the previous example in Figs. 7 and 8. The very clean appearance of

9
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the DFT in Fig. 9(c) results from sampling the spectrum at particular locations. This can be
understood by looking at the corresponding unsampled spectra, based on the DTFT, shown in
Fig. 9(a) and (b). The choice of parameters in Fig. 9(c) resulted in sampling the spectrum at
locations where it is exactly zero in Fig. 9(a).2 This was not the case for the parameters selected
in Fig. 9(d), as seen by comparing it to Fig. 9(b).

It is possible to avoid such misleading results by sampling the spectrum with sufficient resolution,
that is, computing a sufficiently long DFT. The signal v[n] was restricted to length N by the
window, but it is possible to calculate theM -point DFT (M > N) by padding v[n] to length M
with zeros. Figure 9(e) and (f) shows the results using a longer DFT. The signals were created
from the same sum of cosines and 64-point rectangular window used in Fig. 9(a) and (b). Then
the 64-point signals were padded with zeros to lengthM = 128. The magnitude of the 128-point
DFTs are shown in Fig. 9(e) and (f). The more closely spaced frequency samples clearly provide
a more accurate visual representation of the underlying spectrum.

To summarize, the examples shown in Figs. 7–9 illustrate that the DFT can be used effectively
for spectral analysis, providing that parameters are selected appropriately. The window length
and the length of the DFT both affect the resulting frequency samples. In particular, the window
length is related to the smearing of the spectrum, while the DFT length controls the spacing of
the frequency samples.

5.4 Summary

In this chapter, we considered the operations of sampling in time and sampling in frequency. It
was shown that sampling in one domain (multiplication by a periodic impulse train) corresponds
to forming a periodic signal in the other domain (convolution with a periodic impulse train).
Furthermore, we saw that the reconstruction of a continuous-time signal (convolution with a sinc
function) corresponds to multiplying with the ideal lowpass filter in the frequency domain. Sim-
ilarly, reconstruction of a frequency-sampled signal is accomplished by convolving the frequency
samples with a sinc function in the frequency domain, which corresponds to multiplication with
a rectangular window in the time domain.

The idea of sampling was used to show that the CTFS and the DTFT are both special cases of
the CTFT, where the roles of time and frequency are interchanged. The CTFS, which pertains
to signals that are periodic in time, is obtained by frequency sampling the CTFT. The DTFT,
which pertains to signals that have been sampled in time, produces a representation that is
periodic in frequency. This relationship between the CTFT and the DTFT for signals related
by sampling in time is the basis for the important application of implementing continuous-time
LTI systems with digital filters.

If the DTFT is subsequently sampled in frequency, we obtain the DFS, which pertains to signals
that are discrete and periodic in time and frequency. Defining signals that are finite in both
time and frequency, based on one period of the DFS signals, we obtain the DFT. The DFT was

2If done deliberately, such sampling of the spectrum at locations where it is exactly zero is a useful technique
to eliminate some effects of the window. However, it requires prior knowledge of the frequency content of the
windowed signal.
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summarized here because of its important interpretation as frequency samples of the DTFT,
but it is covered in more detail in Chapter 4. One important application of the DFT is spectral
analysis, which allows us to determine the frequency content of finite signals using a digital
computer.

Further Reading

Karu Chapter 19.
Oppenheim and Schafer: Chapter 4; Chapter 10, Sections 1 and 2.
Oppenheim, Wilsky and Nawab: Chapter 7.
Siebert Chapter 14.
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Figure 5.1: Sampling in time. (a) Continuous-time signal, bandlimited to W , and a repre-
sentation of its CTFT. (b) The sampling function, p(t), and its CTFT. (c) Sampled signal,
xs(t) = x(t)p(t), and its CTFT, Xs(F ) = X(F )∗P (F ). (d) Discrete-time signal and its DTFT.
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Figure 5.2: Reconstruction of a continuous-time signal from its samples. (a) Sampled signal and
a representation of its CTFT. (b) The interpolation function in time, sinc(πFst), corresponds to
the ideal lowpass filter, 1

F ΠFs
s

(F ), in frequency. The scale factor Fs is included in these functions
for convenience. (c) The reco

2

nstructed signal, x(t) = xs(t)
1

∗ sinc(πFst), and a representation of
its CTFT, X(F ) = Xs(FF )ΠFs/2(F ).s
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Figure 5.3: Sampling a discrete-time signal in frequency. (a) Discrete-time signal of duration N ,
and a representation of its DTFT. (b) The frequency sampling function. (c) Sampled frequency
signal and the resulting periodic signal in the time domain. (d) Discrete-frequency representation
corresponding to the DFS. (e) The DFT corresponds to one period DFS signals shown in (d),
on the interval [0, N − 1].

Cite as: Julie Greenberg, and Bertrand Delgutte. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image
Processing, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on
[DD Month YYYY]. 

14



Figure 5.4: Digital-filter implementation of continuous-time linear systems.

Figure 5.5: Frequency-domain representation of the digital-filter implementation of a continuous-
time linear system.
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Figure 5.6: (A) Sine wave sampled at 3.33 times its frequency. (B) The solid line shows the sine
wave squared. The dashed line shows that the square of the sampled signal is aliased to a lower
frequency, even though the original signal was not.
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Figure 5.7: The effect of windowing on sinusoidal signals. (a) DTFT of rectangular window,
N = 64. (b) DTFT of cosine sequence A0 cos(2πf0n) + A1 cos(2πf1n) with f0 = 0.1, f1 = 0.3,
A0 = 1, and A1 = 3

4 for n = 0, . . . , 63. (c) DTFT of cosine sequence as in (b) with f1 = 0.15.
(d) DTFT of cosine sequence as in (b) with f1 = 0.12. (e) DTFT of cosine sequence as in (b)
with f1 = 0.108.
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Figure 5.8: The effect of windowing on sinusoidal signals. (a) DTFT of rectangular window,
N = 128. (b) DTFT of cosine sequence A0 cos(2πf0n) +A1 cos(2πf1n) with f0 = 0.1, f1 = 0.3,
A0 = 1, A1 = 3

4 for n = 0, . . . , 127. (c) DTFT of cosine sequence as in (b) with f1 = 0.15. (d)
DTFT of cosine sequence as in (b) with f1 = 0.12. (e) DTFT of cosine sequence as in (b) with
f1 = 0.108.
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Figure 5.9: The effect of spectral sampling on sinusoidal signals with a 64-point rectangular
window. (a) DTFT of cosine sequence A0 cos(2πf0n) + A1 cos(2πf1n) with f0 = 1

8 , f1 =
3
16 ,

A0 = 1, and A1 = 3
4 for n = 0, . . . , 63. (b) DTFT of cosine sequence as in part (a) except

f0 = 7
48 and f1 = 10

48 . (c) 64-point DFT of cosine sequence in part (a). (d) 64-point DFT of
cosine sequence in part (b). (e) 128-point DFT of cosine sequence in part (a). (f) 128-point
DFT of cosine sequence in part (b).
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