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Chapter 15 - BLIND SOURCE SEPARATION:


Principal & Independent Component Analysis


c�G.D. Clifford 2005-2008 

Introduction 

In this chapter we will examine how we can generalize the idea of transforming a time 
series into an alternative representation, such as the Fourier (frequency) domain, to facil

­

itate systematic methods of either removing (filtering) or adding (interpolating) data. In 
particular, we will examine the techniques of Principal Component Analysis (PCA) using 
Singular Value Decomposition (SVD), and Independent Component Analysis (ICA). Both 
of these techniques utilize a representation of the data in a statistical domain rather than 
a time or frequency domain. That is, the data are projected onto a new set of axes that 
fulfill some statistical criterion, which implies independence, rather than a set of axes that 
represent discrete frequencies such as with the Fourier transform, where the independence 
is assumed. 

Another important difference between these statistical techniques and Fourier-based tech

­

niques is that the Fourier components onto which a data segment is projected are fixed, 
whereas PCA- or ICA-based transformations depend on the structure of the data being ana

­

lyzed. The axes onto which the data are projected are therefore discovered. If the structure 
of the data (or rather the statistics of the underlying sources) changes over time, then the 
axes onto which the data are projected will change too1. 

Any projection onto another set of axes (or into another space) is essentially a method for 
separating the data out into separate components or sources which will hopefully allow 
us to see important structure more clearly in a particular projection. That is, the direction 
of projection increases the signal-to-noise ratio (SNR) for a particular signal source. For 
example, by calculating the power spectrum of a segment of data, we hope to see peaks 
at certain frequencies. The power (amplitude squared) along certain frequency vectors 
is therefore high, meaning we have a strong component in the signal at that frequency. 
By discarding the projections that correspond to the unwanted sources (such as the noise 
or artifact sources) and inverting the transformation, we effectively perform a filtering 
of the recorded observation. This is true for both ICA and PCA as well as Fourier-based 
techniques. However, one important difference between these techniques is that Fourier 
techniques assume that the projections onto each frequency component are independent 
of the other frequency components. In PCA and ICA we attempt to find a set of axes which 
are independent of one another in some sense. We assume there are a set of independent 

(The structure of the data can change because existing sources are non-stationary, new signal sources manifest, or 

the manner in which the sources interact at the sensor changes. 
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sources in the data, but do not assume their exact properties. (Therefore, they may overlap 
in the frequency domain in contrast to Fourier techniques.) We then define some measure 
of independence and attempt to decorrelate the data by maximising this measure for (or 
between) projections onto each axis of the new space which we have transformed the data 
into. The sources are the data projected onto each of the new axes. Since we discover, 
rather than define the the new axes, this process is known as blind source separation. 
That is, we do not look for specific pre-defined components, such as the energy at a specific 
frequency, but rather, we allow the data to determine the components. 

For PCA the measure we use to discover the axes is variance and leads to a set of orthog­
onal axes (because the data are decorrelated in a second order sense and the dot product 
of any pair of the newly discovered axes is zero). For ICA this measure is based on non-
Gaussianity, such as kurtosis, and the axes are not necessarily orthogonal. Kurtosis is the 
fourth moment (mean, variance, and skewness are the first three) and is a measure of how 
non-Gaussian is a probability distribution function (PDF). Large positive values of kurtosis 
indicate a highly peaked PDF that is much narrower than a Gaussian. A negative kurtosis 
indicates a broad PDF that is much wider than a Gaussian (see §15.4). Our assumption 
is that if we maximize the non-Gaussianity of a set of signals, then they are maximally 
independent. This comes from the central limit theorem; if we keep adding independent 
signals together (which have highly non-Gaussian PDFs), we will eventually arrive at a 
Gaussian distribution. Conversely, if we break a Gaussian-like observation down into a 
set of non-Gaussian mixtures, each with distributions that are as non-Gaussian as possi­
ble, the individual signals will be independent. Therefore, kurtosis allows us to separate 
non-Gaussian independent sources, whereas variance allows us to separate independent 
Gaussian noise sources. 

This simple idea, if formulated in the correct manner, can lead to some surprising results, 
as you will discover in the applications section later in these notes and in the accompa­
nying laboratory. However, we shall first map out the mathematical structure required to 
understand how these independent sources are discovered and what this means about our 
data (or at least, our beliefs about the underlying sources). We shall also examine the 
assumptions we must make and what happens when these assumptions break down. 

15.1 Signal & noise separation 

In general, an observed (recorded) time series comprises of both the signal we wish to an­
alyze and a noise component that we would like to remove. Noise or artifact removal often 
comprises of a data reduction step (filtering) followed by a data reconstruction technique 
(such as interpolation). However, the success of the data reduction and reconstruction 
steps is highly dependent upon the nature of the noise and the signal. 

By definition, noise is the part of the observation that masks the underlying signal we wish 
to analyze2, and in itself adds no information to the analysis. However, for a noise signal to 
carry no information, it must be white with a flat spectrum and an autocorrelation function 

2It lowers the SNR! 
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(ACF) equal to an impulse3. Most real noise is not really white, but colored in some respect. 
In fact, the term noise is often used rather loosely and is frequently used to describe signal 
contamination. For example, muscular activity recorded on the electrocardiogram (ECG) 
is usually thought of as noise or artifact. (See Fig. 1.) However, increased muscle artifact 
on the ECG actually tells us that the subject is more active than when little or no muscle 
noise is present. Muscle noise is therefore a source of information about activity, although 
it reduces the amount of information we can extract from the signal concerning the cardiac 
cycle. Signal and noise definitions are therefore task-related and change depending on the 
nature of the information you wish to extract from your observations. In this sense, muscle 
noise is just another independent information ‘source’ mixed into the observation. 

Table 1 illustrates the range of signal contaminants for the ECG4. We shall also examine 
the statistical qualities of these contaminants in terms of estimates of their PDFs since the 
power spectrum is not always sufficient to characterize a signal. The shape of a PDF can 
be described in terms of its Gaussianity, or rather, departures from this idealized form 
(which are therefore called super- or sub-Gaussian). The fact that these signals are not 
Gaussian turns out to be an extremely important quality, which is closely connected to the 
concept of independence, which we shall exploit to separate contaminants form the signal. 

Although noise is often modeled as Gaussian white noise5, this is often not the case. Noise is 
often correlated (with itself or sometimes the source of interest), or concentrated at certain 
values. For example, 50Hz or 60Hz mains noise contamination is sinusoidal, a waveform 
that spends most of its time at the extreme values (near its turning points), rather than at 
the mean, as for a Gaussian process. By considering departures from the ideal Gaussian 
noise model we will see how conventional techniques can under-perform and how more 
sophisticated (statistical-based) techniques can provide improved filtering. 

We will now explore how this is simply another form of data reduction (or filtering) 
through projection onto a new set of axes or followed by data reconstruction through 
projection back into the original observation space. By reducing the number of axes (or di­
mensions) onto which we project our data, we perform a filtering operation (by discarding 
the projections onto axes that are believed to correspond to noise). By projecting from a 
dimensionally reduced space (into which the data has been compressed) back to the orig­
inal space, we perform a type of interpolation (by adding information from a model that 
encodes some of our prior beliefs about the underlying nature of the signal or information 
derived directly from a observation data). 

15.2 Matrix transformations as filters 

The simplest filtering of a time series involves the transformation of a discrete one di­
mensional (N = 1) time series x[m], consisting of M sample points such that x[m] = 

3Therefore, no one-step prediction is possible. This type of noise can be generated in MATLAB with the rand() 
function. 

4Throughout this chapter we shall use the ECG as a descriptive example because it has easily recognizable (and 

definable) features and contaminants. 
5generated in MATLAB by the function randn(). 
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Qualities →
Contaminant ↓ 

Frequency 

Range 

Time 

duration 

Electrical Powerline Narrowband 16.6, Continuous 

50 or 60 ± 2 Hz 

Movement Baseline Narrowband Transient or 

Wander (∼ 1 
f2 ) (< 0.5Hz) Continuous 

Muscle Noise (∼ white) Broadband Transient 

Non-powerline Narrowband Transient or 

Electrical Interference (usually ≥ 100 Hz) Continuous 

Electrode pop from Narrowband Transient 

electrode pull (∼ 1-10 Hz) (0.1 - 1 s) 

Observation noise (∼ 1 
f ) Broadband Continuous 

Quantization noise 

(∼ white & Gaussian) 

Broadband Continuous 

Table 1: Contaminants on the ECG and their nature.


Figure 10 seconds of 3 Channel ECG. Note the high amplitude movement artifact (at about 

5 Hz) in the first two seconds and the 10th second. Note also the QRS-like artifacts around 2.6 

and 5.1 seconds. Both artifacts closely resemble real ECG phenomena; the former would trigger 

any ventricular fibrillation detector on channels 2 and 3, and the latter is almost indistinguishable 

from a ventricular ectopic beat on the same channels. The first artifact is due to muscle twitches 

(possibly stemming from either hypothermia or Parkinson’s disease). The second artifact is due to 

electrode pop; a sudden tug on the electrodes used for channels 2 and 3. 
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(x1, x2, x3...xM)T , into a new representation, y = (y1, y2, y3...yM)T . If x[m] (t = 1, 2, ..., M) 
is a column vector6 that represents a channel of ECG, then we can generalize this repre­
sentation so that N channels of ECG X, and their transformed representation Y are given 
by  

x11 x12 · · · x1N 
  

y11 y12 · · · y1N 
 

X = 
 

x21 
. . . 

x22 
. . . 

· · · x2N 
. . . 

 , Y = 
 

y21 
. . . 

y22 
. . . 

· · · y2N 
. . . 

 (1) 

xM1 xM2 · · · xMN yM1 yM2 · · · yMN 

Note that we will adopt the convention throughout this chapter (and in the accompanying 
laboratory exercises) that all vectors are written in lower-case bold and are column vectors, 
and all matrices are written in upper-case bold type. The M points of each of the N signal 
channels form M × N matrices (i.e. the signal is N -dimensional with M samples for each 
vector). An (N × N) transformation matrix W can then be applied to X to create the 
transformed matrix Y such that 

YT = WXT . (2) 

The purpose of a transformation is to map (or project) the data into another space which 
serves to highlight different patterns in the data along different projection axes. To filter 
the data we discard the noise, or ‘uninteresting’ parts of the signal (which are masking the 
information we are interested in). This amounts to a dimensionality reduction, as we are 
discarding the dimensions (or subspace) that corresponds to the noise. 

In general, transforms can be categorized as orthogonal or biorthogonal transforms. For 
orthogonal transformations, the transformed signal is same length (M) as the original and 
the energy of the data is unchanged. An example of this is the Discrete Fourier trans­
form (DFT) where the same signal is measured along a new set of perpendicular axes 
corresponding to the coefficients of the Fourier series (see chapter 4). In the case of the ∑N
DFT with k = M frequency vectors, we can write Eq. 2 as Yk = n=1 WknXn where 
Wkn = e−j2πkn/N , or equivalently 

e−j2π e−j2πN  
e−j4π  

e−j4π e−j8π 
· · · 

e−j4πN 

W = 


.. .. 
· · · 

.. 
 . (3) 

. . .  

e−j2πM e−j4πM e−j2πMN · · · 

For biorthogonal transforms, the angles between the axes may change and the new axes are 
not necessarily perpendicular. However, no information is lost and perfect reconstruction 

of the original signal is still possible (using XT = W−1Y
T
). 

Transformations can be further categorized as as either lossless (so that the transformation 
can be reversed and the original data restored exactly) or as lossy. When a signal is filtered 
or compressed (through downsampling for instance), information is often lost and the 
transformation is not invertible. In general, lossy transformations involve a non-invertible 
transformation of the data using a transformation matrix that has at least one column set 

In Matlab the               
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to zero. Therefore there is an irreversible removal of some of the data N -dimensional data 
and this corresponds to a mapping to a lower number of dimensions (p < N). 

In the following sections we will study two transformation techniques Principal Component 
Analysis (PCA) and Independent Component Analysis (ICA). Both techniques attempt to 
find an independent set of vectors onto which we can transform the data. The data that 
are projected (or mapped) onto each vector are the independent sources. The basic goal in 
PCA is to decorrelate the signal by projecting the data onto orthogonal axes. However, ICA 
results in a biorthogonal transform of the data and the axes are not necessarily orthogonal. 
Both PCA and ICA can be used to perform lossy or lossless transformations by multiplying 
the recorded (observation) data by a separation or demixing matrix. Lossless PCA and ICA 
both involve projecting the data onto a set of axes which are determined by the nature of 
the data, and are therefore methods of blind source separation (BSS). (Blind because the 
axes of projection and therefore the sources are determined through the application of an 
internal measure and without the use of any prior knowledge of the data structure.) 

Once we have discovered the axes of the independent components in the data and have 
separated them out by projecting the data onto these axes, we can then use these tech­
niques to filter the data. By setting columns of the PCA and ICA separation matrices that 
correspond to unwanted sources to zero, we produce non-invertible matrices7. If we then 
force the inversion of the separation matrix8 and transform the data back into the original 
observation space, we can remove the unwanted source from the original signal. Figure 
2 illustrates the BSS paradigm for filtering whereby we have N unknown sources in an 
unknown source space which are linearly mixed and transformed into an observation space 
in which they are recorded. We then attempt to discover (an estimate of) the sources, Ẑ, or 
the inverse of the mixing matrix, W ≈ A−1, and use this to transform the data back into an 
estimate of our source space. After identifying the sources of interest and discarding those 
that we do not want (by altering the inverse of the demixing matrix to have columns of 
zeros for the unwanted sources), we reproject the data back into the observation space us­
ing the inverse of the altered demixing matrix, Wp

−1. The resultant data Xfilt, is a filtered 
version of the original data X. 

We shall also see how the sources that we discover with PCA have a specific ordering 
according to the energy along each axis for a particular source. This is because we look for 
the axis along which the data has maximum variance (and hence energy or power9). If the 
signal to noise ratio (SNR) is greater than unity, the signal of interest is therefore confined 
to the first few components. However, ICA allows us to discover sources by measuring 
a relative cost function between the sources that is dimensionless. There is therefore no 
relevance to the order of the columns in the separated data and often we have to apply 
further signal-specific measures, or heuristics, to determine which sources are interesting. 

7For example, a transformation matrix [1 0; 0 0] is non-invertible, or singular ( inv([1 0; 0 0]) = [Inf Inf; 
Inf Inf] in Matlab) and multiplying a two dimensional signal by this matrix performs a simple reduction of the data 

by one dimension. 
8Using a pseudo-inversion technique such as Matlab’s pinv; pinv([1 0; 0 0]) = [1 0; 0 0]. 
9 2All are proportional to x . 
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Figure 2: The general paradigm of Blind Source Separation for filtering. Given some unknown 

matrix of sources Z which is mixed by some linear stationary matrix of constants A, our sources are 

projected from a source space to an observation space to give the observations, X. These observations 

are then transposed back into an estimated source space in which the estimates of the sources, Ẑ are 

projected. We then reduce the dimensionality of the estimated source space, by discarding the 

estimates of the sources that correspond to noise or unwanted artifacts by setting N −p columns of 

W
−1 to zero (to give Wp

−1) and reprojecting back into the observation space. The resulting matrix 

of filtered observations is Xfilt. The filtered observation space and original observation space are 

the same, but the data projected into them is filtered and unfiltered respectively. In the case of PCA, 

the sources are the columns of U, and can be formed using S−1 and VT−1 
(see § 15.3.1, Eq. 4), 

but the transformation is not so straightforward. Reducing the dimensionality of S to have only p 
non-zero columns, the filtered observations can be reconstructed by evaluating Xfilt = USpV

T. In 

the case of ICA, X can multiplied by the demixing matrix W, to reveal the estimates of the sources, 

Y = Ẑ. Columns of W−1 can be set to zero to remove the ‘noise’ sources and the filtered data are 

reconstructed using Xfilt = Wp
−1

Y . 
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15.3 Principal Component Analysis 

In the case of the Fourier transform, the basis functions or axes of the new representation 
are predefined and assumed to be independent, whereas with PCA the representation, or 
the basis vectors, are found in the data by looking for a set of axes that are independent. 
That is, the data undergoes a decorrelation using variance as the metric. Projections onto 
these axes, or basis vectors, are independent in a second order sense and are orthogonal 
(the dot product of the basis vectors, and the cross-correlation of the projections are close 
to zero). 

The basic idea in the application of PCA to a data set, is to find the component vectors 
y1, y2,...,yN that explain the maximum amount of variance possible by N linearly trans­
formed components. PCA can be defined in an intuitive way using a recursive formulation. 
The direction of the first principal component v1 is found by passing over the data and 
attempting to maximize the value of v1 = arg max‖v‖=1 E{(v1 

TX)2} where v1 is the same 
length M as the data X. Thus the first principal component is the projection on the direc­
tion in which the variance of the projection is maximized. Each of the remaining N − 1 
principal components are found by repeating this process in the remaining orthogonal sub­
space (which reduces in dimensionality by one for each new component we discover). The 
principal components are then given by yi = vi

TX (i = 1, ..., N), the projection of X onto 
each vi. This transformation of the columns of X onto vi

T , to give yi is also known as the 
(discrete) Karhunen-Loève transform, or the Hotelling transform, a derivation of which is 
given in appendix 15.9.1). 

Although the basic goal in PCA is to decorrelate the data by performing an orthogonal 
projection, we often reduce the dimension of the data from N to p (p < N) to remove 
unwanted components in the signal. It can be shown that the PCA representation is an op­
timal linear dimension reduction technique in the mean-square sense [1]. One important 
application of this technique is for noise reduction, where the data contained in the last 
N − p components is assumed to be mostly due to noise. Another benefit of this technique 
is that a projection into a subspace of a very low dimension, for example two or three, can 
be useful for visualizing multidimensional or higher order data. 

In practice, the computation of the vi can be simply accomplished using the sample co­
variance matrix C = XTX. The vi are the eigenvectors of C (an M × M matrix) that 
correspond to the N eigenvalues of C. A method for determining the eigenvalues in this 
manner is known as Singular Value Decomposition (SVD), which is described below. 

15.3.1 Method of SVD 

To determine the principal components of a multi-dimensional signal, we can use the 
method of Singular Value Decomposition. Consider a real M ×N matrix X of observations 
which may be decomposed as follows; 

X = USVT (4) 
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where S is an M×N non-square matrix with zero entries everywhere, except on the leading 
diagonal with elements si (= SMN , M = N) arranged in descending order of magnitude. 
Each si is equal to 

√
λi, the square root of the eigenvalues of C = XTX. A stem-plot of 

these values against their index i is known as the singular spectrum or eigenspectrum. 
The smaller the eigenvalue, the smaller the total energy is that is projected along the 
corresponding eigenvector. Therefore, the smallest eigenvalues are often considered to be 
associated with eigenvectors that describe the noise in the signal10. The columns of V form 
an N ×N matrix of column vectors, which are the eigenvectors of C. The M ×M matrix U 

is the matrix of projections of X onto the eigenvectors of C [2]. A truncated SVD of X can 
be performed such that only the the most significant (p largest) eigenvectors are retained. 
In practice choosing the value of p depends on the nature of the data, but is often taken 
to be the knee in the eigenspectrum (see §15.3.3) or the value where 

∑p si > α
∑N

i=1 i=1 si 

and α is some fraction ≈ 0.95. The truncated SVD is then given by Y = USpV
T and the 

columns of the M × N matrix Y are the noise-reduced signal (see Fig, 3 and the practical 
example given in § 15.3.3). 

A routine for performing SVD is as follows: 

1. Find the N non-zero eigenvalues, λi of the matrix C = XTX and form a non-square 
diagonal matrix S by placing the square roots si = 

√
λi of the N eigenvalues in 

descending order of magnitude on the leading diagonal and setting all other elements 
of S to zero. 

2. Find the orthogonal eigenvectors of the matrix XTX corresponding to the obtained 
eigenvalues, and arrange them in the same order. this ordered collection of column

­

vectors forms the matrix V. 

3. Find the first N column-vectors of the matrix U: ui = si
−1Xvi (i = 1 : N). Note that 

s−i 
1 are the elements of S−1 . 

4. Add the rest of M − N vectors to the matrix U using the Gram-Schmidt orthogonal

­

ization process (see appendix 15.9.2). 

15.3.2 Eigenvalue decomposition - a worked example 

To find the singular value decomposition of the matrix 

 
1 1 

 

X =  0 1  (5) 
1 0 

first we find the eigenvalues, λ, of the matrix 

[ 
2 1 

] 

C = XTX = 
1 2 

10This, of course, is not true if the noise energy is comparable or larger than the signal of interest. 
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in the usual manner by letting 
Cv = λv = 0 (6) 

so (C − λI) = 0 and 
2 − λ 1
∣∣∣∣ 

∣∣∣∣ = 0
1 2 − λ 

Evaluating this determinant and solving this characteristic equation for λ, we find (2 −
λ)2 − 1 = 0, and so λ1 = 3 and λ2 = 1. Next we note the number of non-zero eigenvalues 
of the matrix XTX (two in this case). Then we find the orthonormal eigenvectors of the 
matrix XT X corresponding to the non-zero eigenvalues (λ1 and λ2) by solving for v1 and 
v2 using λ1 and λ2 and in (C − λI)v = 0 ... 

[ √
2 
] [ √

2 
] 

v1 = √2
2 ,v2 = 2√

2 , (7) 
2 −

2 

forming the matrix [ √
2 

√
2 
] 

V = [v1v2] = √2
2 

2√
2 (8) 

2 −
2 

where v1 and v2 are normalized to unit length. Next we write down the singular value 
matrix S which is a diagonal matrix composed of the square roots of the eigenvalues of 
C = XTX arranged in descending order of magnitude. 

 
s1 0 

  √
(λ1) 0 

  √
3 0 

 

S =  0 s2  =  0 
√

(λ2)  =  0 
√

1  . (9) 
0 0 0 0 0 0 

Recalling that the inverse of a matrix B with elements bij is given by 

B−1 =
1 

[ 
b22 −b21 

] 

(10) 
det�B� −b12 b11 

and so 
1 
[ 

1 0 
] 

S−1 = √
3 0 

√
3 

(11) 

and we can find the first two columns of U, using the relation 

√
3 

 
1 1 

[ √
2 
]  √

3
6 
 

u1 = 1 Xv1 = 0 1 2 = 
 √

6 s−1 

3 
  √

2  √6
6 


1 0 2 

6 

and  
1 1 

[ √
2 
]  

0 
 

√
2 = s−1Xv2 = 0 1 =u2 2 

 
1 0 

 
− 

2√

2
2 

 −√
2
2
2 
 . 
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Using the Gram-Schmitd process (see appendix 15.9.2) we can calculate the third and
remaining orthogonal column of U to be

u3 =

⎡ √

⎢⎣
3

3√
− 3

√3
− 3

⎤

3

⎥
.

Hence

⎦

U = [u1u2u3] =

⎡ √

⎢⎣
6

√
0

3
3

√ 3
6

√

6
2

√

2
− 3

√ 3
6

√

6
− 2

√

2
− 3

⎤

3

⎥

and the singular value decomposition of the matrix X is
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15.3.3 SVD filtering - a practical example using the ECG

We will now look at a more practical (and complicated) illustration. SVD is a commonly
employed technique to compress and/or filter the ECG. In particular, if we align N heart-
beats, each M samples long, in a matrix (of size M × N), we can compress the matrix
down (into an M p) matrix, using only the first p << N principal components. If we
then reconstruct the

×
data by inverting the reduced rank matrix, we effectively filter the

original data.

Fig. 3a is a set of 8 heart beat waveforms recorded from a single ECG lead recorded with
a sampling frequency Fs = 200 Hz, which have been divided into one-second segments
centered on their R-peaks (maximum values), and placed side-by-side to form a 200 8
matrix. The data set is therefore 8-dimensional and an SVD will lead to 8 eigenvectors. Fig.

×

3b is the eigenspectrum obtained from SVD11. Note that most of the power is contained in
the first eigenvector. The knee of the eigenspectrum is at the second principal component.
Fig. 3c is a plot of the reconstruction (filtering) of the data using just the first eigenvector12.
Fig. 3d is the same as Fig. 3c, but the first two eigenvectors have been used to reconstruct
the data. The data in Fig. 3d is therefore noisier than that in Fig. 3c.

Note that S derived from a full SVD (using Matlab’s function svd()) is an invertible matrix,
and no information is lost if we retain all the principal components. In other words,
we recover the original data by performing the multiplication USVT . However, if we
perform a truncated SVD (using svds()) then the inverse of S (inv(S)) does not exist.
The transformation that performs the filtering is non-invertible and information is lost
because S is singular.

11In Matlab: [U S V]=svd(data); stem(diag(S)).
12In Matlab: [U S V]=svds(data,1); mesh(U*S*V’).
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Figure 3: SVD of eight R-peak aligned P-QRS-T complexes; a) in the original form with a large 

amount of in-band noise, b) eigenspectrum of decomposition, c) reconstruction using only the first 

principal component, d) reconstruction using only the first two principal components. 
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From a data compression point of view, SVD is an excellent tool. If the eigenspace is 
known (or previously determined from experiments), then the N -dimensions of data can 
in general be encoded in only p-dimensions of data. So for M sample points in each signal, 
an M × N matrix is reduced to an M × p matrix. In the above example, retaining only 
the first principal component, we achieve a compression ration of 8 : 1. Note that the 
data are encoded in the U matrix and so we are only interested in the first p columns. 
The eigenvalues and eigenvectors are encoded in S and V matrices, and therefore an 
additional p scalar values are required to encode the relative energies in each column (or 
signal source) in U. Furthermore, if we wish to encode the eigenspace onto which the data 
in U is projected, we require an additional N2 scalar values (the elements of V). 

It should be noted that the eigenvectors are likely to change13, based upon heart-rate de­
pendent beat-to-beat morphology changes (because the cardiac conduction speed changes 
at different heart rates) and the presence of abnormal beats. 

In order to find the global eigenspace for all beats, we need to take a large, representative 
set of heartbeats14 and perform SVD upon this [3]. Projecting each new beat onto these 
globally derived basis vectors results in a filtering of the signal that is essentially equiv­
alent to passing the P-QRS-T complex through a set of trained weights of a multi-layer 
perceptron (MLP) neural network (see [4] & appendix 15.9.4). Abnormal beats or arti­
facts erroneously detected as normal beats will have abnormal eigenvalues (or a highly 
irregular structure when reconstructed by the MLP). In this way, beat classification can be 
performed. It should be noted however, that in order to retain all the subtleties of the QRS 
complex, at least p = 5 eigenvalues and eigenvectors are required (and another five for the 
rest of the beat). At a sampling frequency of Fs Hz and an average beat-to-beat interval of 
RRav (or heart rate of 60/RRav) the compression ratio is Fs RRav (M

p 
−p) : 1 where M is · · 

the number of samples in each segmented heart beat. 

15.4 Independent Component Analysis for source separation and filtering 

Using SVD we have seen how we can separate a signal into a subspace that is signal and 
a subspace that is essentially noise. This is done by assuming that only the eigenvectors 
associated with the p largest eigenvalues represent the signal, and the remaining (M − p) 
eigenvalues are associated with the noise subspace. We try to maximize the independence 
between the eigenvectors that span these subspaces by requiring them to be orthogonal. 
However, the differences between signals and noise are not always clear, and orthogonal 
subspaces may not be the best way to differentiate between the constituent sources in a 
measured signal. 

In this section we will examine how choosing a measure of independence other than vari­
ance can lead to a more effective method for separating signals. A particularly intuitive 
illustration of the problem of source separation through discovering independent sources, 
is known as the Cocktail Party Problem. 

13Since they are based upon the morphology of the beats, they are also lead-dependent.

14That is, N >> 8.
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15.4.1 Blind Source Separation; the Cocktail Party Problem 

The Cocktail Party Problem is a classic example of Blind Source Separation (BSS), the sep­
aration of a set of observations into the constituent underlying (statistically independent) 
source signals. The Cocktail Party Problem is illustrated in Fig. 4. If each of the J voices 
you can hear at a party are recorded by N microphones, the recordings will be a matrix 
composed of a set of N vectors, each of which is a (weighted) linear superposition of the 
J voices. For a discrete set of M samples, we can denote the sources by an J × M matrix, 
Z, and the N recordings by an N × M matrix X. Z is therefore transformed into the ob­
servables X (through the propagation of sound waves through the room) by multiplying 
it by a N × J mixing matrix A such that15 XT = AZT . (Recall Eq. 2 in §15.2.) Figure 
4 illustrates this paradigm where sound waves from J = 3 independent speakers (z1, z2, 
and z3, left) are superimposed (center), and recorded as three mixed source vectors with 
slightly different phases and volumes at three spatially separated but otherwise identical 
microphones. 

In order for us to ‘pick out’ a voice from an ensemble of voices in a crowded room, we 
must perform some type of BSS to recover the original sources from the observed mixture. 
Mathematically, we want to find a demixing matrix W, which when multiplied by the 
recordings XT, produces an estimate YT of the sources ZT . Therefore W is a set of 
weights (approximately16) equal to A−1 . One of the key methods for performing BSS 
is known as Independent Component Analysis (ICA), where we take advantage of (an 
assumed) linear independence between the sources. 

An excellent interactive example of the cocktail party problem can be found at 

http://www.cis.hut.fi/projects/ica/cocktail/cocktail_en.cgi 

The reader is encouraged to experiment with this URL at this stage. Initially you should 
attempt to mix and separate just two different sources, then increase the complexity of the 
problem adding more sources. Note that the relative phases and volumes of the sources 
differ slightly for each recording (microphone) and that the separation of the sources may 
change in order and volume (amplitude). This is known as the permutation and scaling 
problem for ICA (see § 15.8.1). 

15.4.2 Higher order independence: ICA 

Independent Component Analysis is a general name for a variety of techniques which seek 
to uncover the independent source signals from a set of observations that are composed 
of linear mixtures of the underlying sources. Consider Xjn to be a matrix of J observed 

15Note that X,Y and Z are row matrices, for consistency with the PCA formulation, and so we take the transpose in 

the ICA formulation. Note also that in standard ICA notation,X = AS, where X and S are row matrices and S are the 

sources. However, to avoid confusion with the PCA notation, we S is denoted ZT . 
16Depending on the performance details of the algorithm used to calculate W. 
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Figure 4: The Cocktail Party Problem: sound waves from J = 3 independent speakers (z1, z2 and z3 

left) are superimposed at a cocktail party (center), and are recorded as three mixed source vectors, 

x1, x2 and x3 on N = 3 microphones (right). The M × J observations (or recordings), XT of the 

underlying sources, ZT, are a linear mixture of the sources, such that XT = AZ
T, where A is a 

J × N linear mixing matrix. An estimate YT, of the M × J sources ZT, is made by calculating a 

demixing matrix W, which acts on XT such that YT = WX
T = ẐT and W ≈ A

−1 . 
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random vectors, A a N ×J mixing matrix and Z, the J (assumed) source vectors such that

XT = AZT (12)

Note that here we have chosen to use the transposes of X and Z to retain dimensional
consistency with the PCA formulation in 15.3, Eq. 4. ICA algorithms attempt to find a
separating or demixing matrix W such that

§

YT = WXT (13)

where W = Â−1, an approximation of the inverse of the original mixing matrix, and YT =
ẐT, an M × J matrix, is an approximation of the underlying sources. These sources are
assumed to be statistically independent (generated by unrelated processes) and therefore
the joint PDF is the product of the densities for all sources:

P (Z) = p(zi) (14)

where p(z th
i) is the PDF of the i source and P

∏

(Z) is the joint density function.

The basic idea of ICA is to apply operations to the observed data XT, or the de-mixing ma-
trix, W, and measure the independence between the output signal channels, (the columns
of YT) to derive estimates of the sources, (the columns of ZT). In practice, iterative meth-
ods are used to maximize or minimize a given cost function such as mutual information,
entropy or the fourth order moment, kurtosis, a measure of non-Gaussianity (see 15.4).
We shall see later how entropy-based cost functions are related to kurtosis and therefore

§

all of the cost functions are a measure of non-Gaussianity to some extent17. From the
Central Limit Theorem[5], we know that the distribution of a sum of independent ran-
dom variables tends toward a Gaussian distribution. That is, a sum of two independent
random variables usually has a distribution that is closer to Gaussian than the two orig-
inal random variables. In other words, independence is non-Gaussianity. In ICA, if we
wish to find independent sources, we must find a demixing matrix W that maximizes the
non-Gaussianity of each source. It should also be noted at this point that determining the
number of sources in a signal matrix is outside the scope of this chapter18, and we shall
stick to the convention J ≡ N , the number of sources equals the dimensionality of the
signal (the number of independent observations). Furthermore, in conventional ICA, we
can never recover more sources than the number of independent observations (J > N),
since this is a form of interpolation and a model of the underlying source signals would
have to be used. (In terms of 15.2, we have a subspace with a higher dimensionality than
the original data19.)

§

The essential difference between ICA and PCA is that PCA uses variance, a second order
moment, rather than higher order statistics (such as the fourth moment, kurtosis) as a

17The reason for choosing between different cost functions is not always made clear, but computational efficiency

and sensitivity to outliers are among the concerns; see § 15.5. The choice of cost function also determines whether we

uncover sub- or super-Gaussian sources; see §15.6.
18See articles on relevancy determination [6, 7].
19There are methods for attempting this type of analysis; if there are more sensors than sources, the data are over-

determined. If there are less sensors than sources, then the problem is under-determined, but it is still possible to

extract sources under certain conditions by exploiting known properties of the sources, such as their dynamics. See

[8, 9, 10, 11, 12, 13, 14, 15].
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metric to separate the signal from the noise. Independence between the projections onto 
the eigenvectors of an SVD is imposed by requiring that these basis vectors be orthogonal. 
The subspace formed with ICA is not necessarily orthogonal and the angles between the 
axes of projection depend upon the exact nature of the data used to calculate the sources. 

The fact that SVD imposes orthogonality means that the data has been decorrelated (the 
projections onto the eigenvectors have zero covariance). This is a much weaker form of 
independence than that imposed by ICA20. Since independence implies uncorrelatedness, 
many ICA methods constrain the estimation procedure such that it always gives uncorre­
lated estimates of the independent components. This reduces the number of free parame­
ters, and simplifies the problem. 

Gaussianity 

We will now look more closely at what the kurtosis of a distribution means, and how 
this helps us separate component sources within a signal by imposing independence. The 
first two moments of random variables are well known; the mean and the variance. If a 
distribution is Gaussian, then the mean and variance are sufficient characterize variable. 
However, if the PDF of a function is not Gaussian then many different signals can have the 
same mean and variance. (For instance, all the signals in Fig. 6 have a mean of zero and 
unit variance. 

Recall from earlier chapters that the mean (central tendency) of a random variable x, is 
defined to be ∫ +∞ 

µx = E{x} = xpx(x)dx (15) 
−∞ 

where E{} is the expectation operator, px(x) is the probability that x has a particular value. 
The variance (second central moment), which quantifies the spread of a distribution is 
given by ∫ +∞ 

σx 
2 = E{(x − µx)

2 = (x − µx)
2 px(x)dx (16) }

−∞ 

and the square root of the variance is equal to the standard deviation, σ, of the distribution. 
By extension, we can define the N th central moment to be 

∫ +∞ 
υn = E{(x − µx)

n } = (x − µx)
n px(x)dx (17) 

−∞ 

The third moment of a distribution is known as the skew, ζ, and characterizes the degree of 

asymmetry about the mean. The skew of a random variable x is given by υ3 = E{(x
σ
−

3 
µx)3} . 

A positive skew signifies a distribution with a tail extending out toward a more positive 
value and a negative skew signifies a distribution with a tail extending out toward a more 
negative (see Fig. 5a). 

Orthogonality implies independence, but independence does not necessarily imply orthogonality. 
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The fourth moment of a distribution is known as kurtosis and measures the relative peaked­
ness of flatness of a distribution with respect to a Gaussian (normal) distribution. See Fig. 
5b. It is defined in a similar manner to be 

κ = υ4 = 
E{(x − µx)

4} 
(18) 

σ4 

Note that the kurtosis of a Gaussian is equal to 3 (whereas the first three moments of a 
distribution are zero)21. A distribution with a positive kurtosis (> 3 in Eq. (20) ) is termed 
leptokurtic (or super-Gaussian). A distribution with a negative kurtosis (< 3 in Eq. (20)) 
is termed platykurtic (or sub-Gaussian). Gaussian distributions are termed mesokurtic. 
Note also that skewness and kurtosis are normalized by dividing the central moments by 
appropriate powers of σ to make them dimensionless. 

These definitions are however, for continuously valued functions. In reality, the PDF is 
often difficult or impossible to calculate accurately and so we must make empirical ap­
proximations of our sampled signals. The standard definition of the mean of a vector x 

with M values (x = [x1, x2, ..., xM ]) is 

M
1


µ̂x = xi
M 

i=1 

the variance of x is given by


and the skewness is given by


M

M 
i=1 

1 
σ̂2(x) = )2(xi − µ̂x

ˆ
[
xi − µx 

]3M

M σ̂
i=1 

1

ζ̂(x)
 =
 (19)
.


The empirical estimate of kurtosis is similarly defined by 

M
ˆ

[
xi − µx 

]4
1


κ̂(x)
 (20)
=

M σ̂

i=1 

Fig. 6 illustrates the time series, power spectra and distributions of different signals and 
noises found in the ECG recording. From left to right: (i) the underlying Electrocardiogram 
signal, (ii) additive (Gaussian) observation noise, (iii) a combination of muscle artifact 
(MA) and baseline wander (BW), and (iv) powerline interference; sinusoidal noise with 
f ≈33Hz ± 2Hz. Note that all the signals have significant power contributions within the 
frequency of interest (< 40Hz) where there exists clinically relevant information in the 
ECG. Traditional filtering methods therefore cannot remove these noises without severely 
distorting the underlying ECG. 

21The proof of this is left to the reader, but noting that the general form of the normal distribution is px(x) = 
e −(x−µx

2 )/2σ2 

, and 
R ∞ 

e−ax 2 
dx = 

p

π/a should help (especially if you differentiate the integral twice). Note also 
σ
√

2π −∞ 

then, that the above definition of kurtosis (and Eq. (20) ) sometimes has an extra −3 term to make a Gaussian have 

zero kurtosis, such as in Numerical Recipes in C. Note that Matlab uses the convention without the -3 term and therefore 

Gaussian distributions have a κ = 3. This convention is used in the laboratory assignment that accompanies these notes. 
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Figure 5: Distributions with third and fourth moments [skewness, (a) and kurtosis (b) respectively] 

that are significantly different from normal (Gaussian). 

15.4.3 ICA for removing noise on the ECG 

Figure 7 illustrates the effectiveness of ICA in removing artifacts from the ECG. Here we 
see 10 seconds of 3 leads of ECG before and after ICA decomposition (upper and lower 
graphs respectively). The upper plot (a) is the same data as in Fig. 1. Note that ICA 
has separated out the observed signals into three specific sources; 1b) The ECG, 2b) High 
kurtosis transient (movement) artifacts, and 2c) Low kurtosis continuous (observation) 
noise. In particular, ICA has separated out the in-band QRS-like spikes that occurred at 2.6 
and 5.1 seconds. Furthermore, time-coincident artifacts at 1.6 seconds that distorted the 
QRS complex, were extracted, leaving the underlying morphology intact. 

Relating this to the cocktail party problem, we have three ‘speakers’ in three locations. 
First and foremost we have the series of cardiac depolarization/repolarization events cor­
responding to each heartbeat, located in the chest. Each electrode is roughly equidistant 
from each of these. Note that the amplitude of the third lead is lower than the other two, 
illustrating how the cardiac activity in the heart is not spherically symmetrical. Another 
source (or ‘speaker’) is the perturbation of the contact electrode due to physical movement. 
The third ‘speaker’ is the Johnson (thermal) observation noise. 

However, we should not assume that ICA is a panacea to remove all noise. In most situa­
tions, complications due to lead position, a low signal-noise ratio, and positional changes 
in the sources cause serious problems. Section 15.8 addresses many of the problems in 
employing ICA, using the ECG as a practical illustrative guide. 

It should also be noted that the ICA decomposition does not necessarily mean the relevant 
clinical characteristics of the ECG have been preserved (since our interpretive knowledge 
of the ECG is based upon the observations, not the sources). Therefore, in order to recon­
struct                  
demixing matrix that correspond to artifacts or noise, then invert it and multiply by the 
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Figure 6: time Series, power spectra and distributions of different signals and noises found on 

the ECG. From left to right: (i) the underlying Electrocardiogram signal, (ii) additive (Gaussian) 

observation noise, (iii) a combination of muscle artifact (MA) and baseline wander (BW), and (iv) 

powerline interference; sinusoidal noise with f ≈ 33Hz ± 2Hz. 
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decomposed data to ‘restore’ the original ECG observations (see Fig. 2. An example of this 
procedure using the data in Fig. 1 and Fig. 7 are presented in Fig. 8. In terms of Fig. 
2 and our general ICA formalism, the estimated sources Ẑ (Fig. 7b) are recovered from 
the observation X (Fig. 7a) by estimating a demixing matrix W. It is no longer obvious 
which lead the underlying source (signal 1 in Fig. 7b) corresponds to.In fact, this source 
does not correspond to any clinical lead at all, just some transformed combination of leads. 
In order to perform a diagnosis on this lead, the source must be projected back into the 
observation domain by inverting the demixing matrix W. It is at this point that we can 
perform a removal of the noise sources. Columns of W−1 that correspond to noise and/or 
artifact (signal 2 and signal 3 on Fig. 7b in this case) are set to zero (W−1 → Wp

−1), where 
the number of non-noise sources, p = 1, and the filtered version of each clinical lead of X, 
is reconstructed in the observation domain using Xfilt = Wp

−1Y to reveal a cleaner 3-lead 
ECG (Fig. 8). 

tion. Plot a is the same data as

                    

Courtesy of Springer Science + Business Media. Used with permission.  
Source: He, Clifford, and Tarassenko. Neural Computing & Applications 15, no. 2 (April 2006): 105-116. doi:10.1007/s00521-005-0013-y.

Figure 10 seconds of 3 Channel ECG a) before ICA decomposition and b) after ICA decomposi­

in Fig. 1. Note that ICA has separated out the observed signals into

three specific sources; 1 b) The ECG, 2 b) High kurtosis transient (movement) artifacts, and 2 c) 

Low kurtosis continuous (observation) noise. 

15.5 Different methods for performing ICA - choosing a cost function 

Although the basic idea behind ICA is very simple, the actual implementation can be for­
mulated from many perspectives: 

•	 Maximum likelihood (MacKay [16], Pearlmutter & Parra [17], Cardoso [18], Giro­
lami & Fyfe [19]) 
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Figure 10 seconds of data (from Fig. 1) after ICA decomposition, (see Fig 7) and reconstruction 

with noise channels set to zero. 

•	 Higher order moments and cumulants (Comon [20], Hyvarinen¨ & Oja [21], ) 

•	 Maximization of information transfer (Bell & Sejnowski [22], Amari et al. [23]; 
Lee et al. [24]) 

•	 Negentropy maximization (Girolami & Fyfe [19]) 

•	 Non-linear PCA (Karhunen et al. [25, 26], Oja et al. [27]) 

All the above methods use separation metrics (or cost functions) that are essentially equiv­
alent to measuring the non-Gaussianity of the estimated sources. The actual implemen­
tation can involve either a manipulation of the output data, Y, or a manipulation of the 
demixing matrix, W. In the remainder of section 15.5 we will examine three common 
cost functions, negentropy, mutual information and the log likelihood. A method for using 
these cost functions to determine the elements of W, gradient descent, (or ascent) which 
is described in section 15.5.3 and appendix 15.9.4. 

15.5.1 Negentropy instead of kurtosis as a cost function 

Although kurtosis is theoretically a good measure of non-Gaussianity, kurtosis is dispro­
portionately sensitive to changes in the distribution tails. Therefore, other measures of 
independence are often used. Another important measure of non-Gaussianity is given by 
negentropy. Negentropy is often a more robust (outlier insensitive) method for estimating 
the fourth moment. Negentropy is based on the information-theoretic quantity of (differ­
ential) entropy. The more random (i.e. unpredictable and unstructured the variable is) the 
larger its entropy. More rigorously, entropy is closely related to the coding length of the 
random variable, in fact, under some simplifying assumptions, entropy is the coding length 
of the random variable. The entropy H of a discrete random variable yi with probability 
distribution P (yi) is defined as 

 
H(y) = −

∑
P (yi) log2 P (yi).	 (21)

i 
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∫ 

This definition can be generalized for continuous-valued random variables and vectors, in 
which case it is called differential entropy. The differential entropy H of a random vector 
y with a probability density function P (y) is defined as 

H(y) = P (y) log2 P (y)dy. (22) − 

A fundamental result of information theory is that a Gaussian variable has the largest 
entropy among all random variables of equal variance [28]. This means that entropy could 
be used as a measure of non-Gaussianity. In fact, this shows that the Gaussian distribution 
is the “most random” or the least structured of all distributions. Entropy is small for 
distributions that are clearly concentrated on certain values, i.e., when the variable is 
clearly clustered, or has a PDF that is very “spiky”. 

To obtain a measure of non-Gaussianity that is zero for a Gaussian variable and always 
non-negative22, we can use a slightly modified version of the definition of differential 
entropy, called negentropy. Negentropy, J , is defined as follows 

J (y) = H(yG) − H(y) (23) 

where yG is a Gaussian random variable of the same covariance matrix as y. Negentropy is 
always non-negative, and is zero if and only if y has a Gaussian distribution. Negentropy 
has the additional interesting property that it is constant for a particular vector which un­
dergoes an invertible linear transformation, such as in the ICA mixing-demixing paradigm. 

The advantage of using negentropy, or, equivalently, differential entropy, as a measure of 
non-Gaussianity is that it is well justified by statistical theory. In fact, negentropy is in 
some sense the optimal estimator of non-Gaussianity, as far as statistical properties are 
concerned. The problem in using negentropy is, however, that it is difficult to compute 
in practice. Estimating negentropy using the definition above would require an estimate 
(possibly non-parametric) of the probability density function. Therefore, simpler approxi­
mations of negentropy are used. One such approximation actually involves kurtosis: 

1 3 2 1 J (y) ≈
12 

E{y } + 
48 

κ(y)2 (24) 

but this suffers from the problems encountered with kurtosis. Another estimate of negen­
tropy involves entropy: 

J (y) ≈ [E{g(y)} − E{g(ϑ)}] , (25) 

where ϑ is a zero mean unit variance Gaussian variable and the function g is some non­
quadratic function which leads to the approximation always being non-negative (or zero if 

2 

2y has a Gaussian distribution). g is usually taken to be 
α 
1 ln cosh(αy) or g(y) = −e−

y 

with 
α some constant (1 ≤ α ≤ 2). If g(y) = y, Eq. 25 degenerates to the definition of kurtosis. 

J (y) is then the cost function we attempt to minimize between the columns of Y. We will 
see how to minimize a cost function to calculate the demixing matrix in section 15.6. 

Therefore, separation of the independent components is achieved by attempting to make negentropy as close to zero 

as possible (and hence making the sources maximally non-Gaussian). 
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∑ 

∑ 

∑ 

15.5.2 Mutual Information based ICA 

Using the concept of differential entropy, we define the mutual information (MI) I between 
M (scalar) random variables, yi, i = 1...M as follows 

M

I(y1, y2, ..., yM ) =
 H(yi) − H(y). (26) 
i=1 

MI is a measure of the (in-) dependence between random variables. MI is always non­
negative, and zero if and only if the variables are statistically independent. MI therefore 
takes into account the whole dependence structure of the variables, and not only the co­
variance (as is the case for PCA). 

Note that for an invertible linear transformation YT = WXT , 

M

I(y1, y2, ..., yM ) =
 H(yi) − H(xi) − log2 �W�. (27) 
i=1 

If we constrain the yi to be uncorrelated and have unit variance E{yTy} = WE{xTx}WT 

= I. This implies that �I� = 1 = (�WE{x T x}WT�) = �W��E{x T x}��WT� and hence 
�W� must be constant. If yi has unit variance, MI and negentropy differ only by a constant, 
and a sign; 

M

I(y1, y2, ..., ym) = c − J (yi) (28) 
i=1 

where c is a constant. This shows the fundamental relationship between MI and negen­
tropy and hence with kurtosis. 

Since MI is a measure of the (mutual) information between two functions, finding a W 

which minimises I between the columns of YT in the transformation YT = WXT leads to 
method for determining the independent components (sources) in our observations XT . 

15.5.3 Maximum Likelihood 

Independent component analysis can be thought of as a statistical modeling technique that 
makes use of latent variables to describe a probability distribution over the observables. 
This is known as generative latent variable modeling and each source is found by deduc­
ing its corresponding distribution. Following MacKay [16], we can model the J observable 
vectors {xj}J as being generated from latent variables {zi}N via a linear mapping Wj=1 i=1 

with elements23 wij. To simplify the derivation we assume the number of sources equals 
the number of observations (N = J), and the data are then defined to be, D = {X}M 

m=1, 
where M is the number of samples in each of the J observations. The latent variables are 
assumed to be independently distributed with marginal distributions P (zi) ≡ pi(zi), where 
pi denotes the assumed probability distributions of the latent variables. 

Note         
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Given A ≡ W−1, the probability of the observables X and the hidden variables Z is 

M


M M m m
P ({X}m=1, {Z}m=1 W) = 
∏ 

[P (x z ,W)P (z m)] (29) |
m=1 

|

M
[( 

J
) (

∏ 
)] 

m m m = 
∏ ∏

(xj −
∑ 

wjiz ) pi(z ) . (30) i i 

m=1 j=1 i i 

Note that for simplicity we have assumed that the observations X have been generated 
without noise24. If we replace the term (xj −

∑
wjizi) by a (noise) probability distribution i 

over xj with mean 
∑

i wjizi and a small standard deviation, the identical algorithm results 
[16]. 

To calculate wij, the elements of W we can use the method of gradient descent which 
requires the optimization of a dimensionless objective function Ł(W), of the parameters 
(the weights). The sequential update of the elements of the mixing matrix, wij, are then 
computed as 

∂Ł 
Δwij = η (31) 

∂wij 

where η is the learning rate25 . 

The cost function Ł(W) we wish to minimize to perform ICA (to maximize independence) 
is the log likelihood function 

( 
M

) 
mŁ(W) = log2 (P (X W)) = log2 

∏ 
P (x W) (32) |

m=1 

|

which is the log of the product of the (independent) factors. Each of the factors is obtained 
by marginalizing over the latent variables, which can be shown ([16], appendix 15.9.3) to 
be equal to 

Ł(W) = log2 | detW| + 
ı 

log2 pi(w
−1 (33) 

∑ 
ij xj). 

15.6 Gradient descent to find the de-mixing matrix W 

In order to find W we can iteratively update its elements wij, using gradient descent or 
ascent on the objective function Ł(W). To obtain a maximum likelihood algorithm, we 
find the gradient of the log likelihood. This turns out to be 

∂ 

∂wij 

log2 P (x m |A) = aji + xjzi (34) 

Ł(W) can be used to ‘guide’ a gradient ascent of the elements of W and maximise the 
log likelihood of each source. If we choose W so as to ascend this gradient, we obtain 

24This leads to the Bell-Sejnowski algorithm [16, 22]. 
25Which can be fixed or variable to aid convergence depending on the form of the underlying source distributions. 
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the learning algorithm from Bell and Sejnowski [22] (ΔW ∝ [WT]−1 + zxT). A detailed 
mathematical analysis of gradient descent/ascent and its relationship to PCA and neural 
networks are given in appendix 15.9.4. (Treat this as optional reading). 

In general, the learning algorithm for ICA can be summarized as a linear mapping, such 
that YT = WXT, followed by a non-linear mapping yi f(yi). f is a non-linear function →
that helps the elements of W converge to values that give maximal statistical indepen­
dence between the rows of Y. In practice, the choice of the non-linearity, f(yi), in the up­
date equations for learning W is heavily dependent on the distribution of the underlying 
sources. For example, if we choose a traditional tanh non-linearity (f(yi) = − tanh(βyi)), 
with β a constant initially equal to unity, then we are implicitly assuming the source densi­
ties are heavier tailed distributions than a Gaussian (pi(zi) ∝ 1/ cosh(zi) ∝ 1/(ezi + e−zi), 
zi = f(yi), with f = −tanh(yi)). Varying β reflects our changing beliefs in the underly­
ing source distributions. In the limit of large β, the non-linearity becomes a step function 
and pi(zi) becomes a biexponential distribution (pi(zi) ∝ e−|z|). As β tends to zero, pi(zi) 
approach more Gaussian distributions. 

If we have no non-linearity, f(yi) ∝ −yi, the we are implicitly assuming a Gaussian dis­
tribution on the latent variables. However, it is well known [4, 29] that without a non­
linearity, the gradient descent algorithm leads to second order decorrelation. That is, we 
perform the same function as PCA. Equivalently, the Gaussian distribution on the latent 
variables is invariant under rotation of the latent variables, so there is no information to 
enable us to find a preferred alignment of the latent variable space. This is one reason 
why conventional ICA is only able to separate non-Gaussian sources. See [16], [30] and 
appendix 15.9.3 for further discussion on this topic. 

15.7 Applications of ICA 

Apart from the example given in §15.4.3, ICA has been used to perform signal separation 
in many different domains. These include: 

•	 Blind source separation; Watermarking, Audio [31, 32], ECG, (Bell & Sejnowski [22], 
Barros et al. [33], McSharry et al. [13]), EEG (Mackeig et al. [34, 35], ). 

•	 Signal and image denoising (Hyvärinen - [36] ), medical (fMRI - [37]) ECG & EEG 
(Mackeig et al. [34, 35]) 

•	 Modeling of the hippocampus and visual cortex (L¨ arinen [38]) orincz, Hyv¨

•	 Feature extraction and clustering, (Marni Bartlett, Girolami, Kolenda [39]) 

•	 Compression and redundancy reduction (Girolami, Kolenda, Ben-Shalom [40]) 

Each particular domain involves subtle differences in the statistical structure of the sources 
in the data which affect the particular choice of the ICA algorithm. Pre-processing steps 
(sometimes including the application of PCA) are extremely important too. However, we 

26


Cite as: G.D.Clifford. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image Processing,
Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on
[DD Month YYYY].



do not have the space to go into detail for each of these applications and the reader is 
encouraged to explore the above references at this point. 

15.8 Limitations of ICA 

While ICA is a powerful technique with few assumptions on the nature of the observations 
and the underlying sources, it must be remembered that ICA does have some intrinsic 
limitations. 

15.8.1 The permutation and scaling problem 

Recall Eq. (12), XT = AZT. We may inset an arbitrary matrix B and its inverse B−1 such 
that 

XT = ABB−1ZT (35) 

and Eq. (12) remains unchanged. The mixing matrix is now AB and the sources are now 
B−1ZT with a different column order and a different scaling. Since we only know X, we 
can only solve jointly for the mixing matrix and the sources and an infinite number of 
(equally valid) pairs are possible. Therefore, the estimates of the sources may appear in 
an arbitrary (column) order (which change with small changes in the observations), and 
with arbitrary scaling, which has no relation to the amplitude or energy in the underlying 
sources. 

Another way to think about this problem, is that we derive the estimate of the demixing 
matrix (W ≈ A−1) by optimising a cost function between the columns of the estimate of 
the sources ẐT . This cost function measures independence in a manner that is amplitude 
independent. (Recall that kurtosis is a dimensionless quantity.) In order to mitigate for 
this problem, some ICA algorithms order the sources in terms of kurtosis and scale them to 
have unit variance. To preserve the original amplitude of the source, it is possible to invert 
the transformation, retaining only a single source, and reconstruct each source back in the 
observation domain. Therefore an accurate knowledge of certain features or properties 
of the underlying sources (such as distinguishing morphological oscillations in the time 
domain or the exact value of the kurtosis) is required to identify a particular source in the 
columns of ẐT . 

15.8.2 Stationary Mixing 

ICA assumes a linear stationary mixing model (the mixing matrix is a set of constants 
independent of the changing structure of the data over time). However, for many applica­
tions this is only true from certain observation points or for very short lengths of time. For 
example, consider the earlier case of noise on the ECG. As the subject inhales, the chest 
expands and the diaphragm lowers. This causes the heart to drop and rotate slightly. If 
we consider the mixing matrix A to be composed of a stationary component As and a 
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non-stationary component Ans such that A = As +Ans then Ans is equal to some constant 
(α) times one of the rotation matrices26 such as 

 
1 0 0 

 

Ans(θ) = α 0 cos(θ)t − sin(θ)t, 
0 sin(θ)t cos(θ)t 

where θ = 2πfresp and fresp is the frequency of respiration27 . In this case, α will be a 
function of θ, the angle between the different sources (the electrical signals from muscle 
contractions and those from cardiac activity), which itself is a function of time. This is 
only true for small values of α, and hence a small angle θ, between each source. This is a 
major reason for the differences in effectiveness of ICA for source separation for different 
lead configurations. 

15.8.3 The assumption of independence 

The sources (columns of ZT) mixed by A are assumed to statistically independent. That 
is, they are generated from some underlying processes that are unrelated. In the cocktail 
party problem, this is trivially obvious; each speaker is not modulating their words as 
a function of any other words being spoken at the same time. However, in the case of 
the ECG noise/artifact removal, this is sometimes not true. When a monitored subject 
suddenly increases their activity levels, artifacts from muscle movements can manifest on 
the ECG. Sometimes, there will be a significant changes in heart rate or beat morphology 
as a result of the activity change. The muscle artifact and beat morphology change are 
no longer independent. If the relationship is strong enough, then ICA will not be able to 
separate the sources. 

15.8.4 Under- or over-determined representations and relevancy determination 

Throughout these notes we have assumed that the number of sources is exactly equal to 
the number of observations. However, this is rarely true. In the case of the cocktail party, 
we usually have two microphones (ears) and more than two independent sources (all the 
other speakers in the room plus any ambient noises such as music). Our representation is 
therefore under-determined and we need to modify the standard ICA formulation to deal 
with this. See [41, 9, 10] for an analysis of this problem. 

Conversely, we may have more observations than sources, as in the case of a 12-lead ECG. 
Apart from the problem of determining which sources are relevant, the actual estimate 
of each source will change depending on how many sources are assumed to be be in the 
mixture (observation). Therefore, an accurate determination of the number of sources can 
prove to be important. See Roberts et al. [6, 7] and Joho et al. [8] for further discussions 
on this topic. 

26See Eq. 118 in appendix 15.9.6. 
27Assuming an idealized sinusoidal respiratory cycle. 
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15.9 Summary and further reading 

In this chapter we have explored how we can apply a transformation to a set of observa­
tions in order to project them onto a set of axes that are in some way more informative 
than the observation space. This is achieved by defining some contrast function between 
the data in the projected subspace which is essentially a measure of independence. If this 
contrast function is second order (variance) then we perform decorrelation through PCA. If 
the contrast function is fourth order and therefore related to Gaussianity, then we achieve 
ICA. The cost function measured between the estimated sources that we use in the itera­
tive update of the demixing matrix (and the manner in which we update it to explore the 
weight space) encodes our prior beliefs as to the non-Gaussianity (kurtosis) of the source 
distributions. The data projected onto the independent (source) components is as statisti­
cally independent as possible. We may then select which projections we are interested in 
and, after discarding the uninteresting components, invert the transformation to effect a 
filtering of the data. 

ICA covers an extremely broad class of algorithms, as we have already seen. Lee et al. [42] 
show that different theories recently proposed for Independent Component Analysis (ICA) 
lead to the same iterative learning algorithm for blind separation of mixed independent 
sources. This is because all the algorithms attempt to perform a separation onto a set of 
basis vectors that are in some way independent, and that the independence can always 
be recast as a departure from Gaussianity. 

However, the concept of blind source separation is far more broad than this chapter re­
veals. ICA has been the fertile meeting ground of statistical modeling [43], PCA [44], 
neural networks [45], Independent Factor Analysis [46], Wiener filtering [11, 47, 48], 
wavelets [49, 47, 50], hidden Markov modeling [51, 7, 52], Kalman filtering [53] and 
non-linear dynamics [14, 54]. Many of the problems we have presented in this chapter 
have been addressed by extending the ICA model with these tools. Although these con­
cepts are outside the scope of this course, they are currently the focus of ongoing research. 
For further reading on ICA and related research, the reader is encouraged to browse the 
following URLs: 

http://www.cnl.salk.edu/ http://www.inference.phy.cam.ac.uk/mackay/ica.pdf 
http://web.media.mit.edu/~paris/ica.html http://www.robots.ox.ac.uk/~sjrob/ 
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Appendix A: 

15.9.1 Karhunen-Loéve or Hotelling Transformation 

The Karhunen-Loéve transformation maps vectors x n in a d-dimensional space (x1, ..., xd) 
onto vectors zn in an p-dimensional space (z1, ..., zp), where p < d. 

The vector xn can be represented as a linear combination of a set of d orthonormal vectors 
ui 

d

(36)
=
 ziuix


i=1 

Where the vectors ui satisfy the orthonormality relation 

uiuj = δij (37) 

in which δij is the Kronecker delta symbol. 

This transformation can be regarded as a simple rotation of the coordinate system from 
the original x’s to a new set of coordinates represented by the z’s. The zi are given by 

zi = ui
T x (38) 

Suppose that only a subset of p ≤ d basis vectors ui are retained so that we use only p 
coefficients of zi. The remaining coefficients will be replaced by constants bi so that each 
vector x is approximated by the expression 

p d

x 

i=1 i=p+1 

The residual error in the vector xn introduced by the dimensionality reduction is given by 

d

biui (39) ziui +=


n n (zi − bi)ui (40) x x =− ˜
i +1 =p

N d∑ 

We can then define the best approximation to be that which minimises the sum of the 
squares of the errors over the whole data set. Thus we minimise 

1

(zi − bi)

2ξp (41)
= 
2 

n=1 i=p+1 

If we set the derivative of ξp with respect to bi to zero we find 

N
1


bi =
 zi = ui x̄
n T 

N 
n=1 
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∑ ∑ 

∑ 

∑


∑ 

Where we have defined the vector x̄ to be the mean vector of the N vectors, 

N
1


x
n (43) x̄ =

N 

n=1 

We can now write the sum-of-squares-error as 

N d
1
 T n(x x̄))2 

i −ξp (u
=

2 

n=1 i=p+1 

N
1
 T 

i Cui (44) =
 u

2 

n=1 

Where C is the covariance matrix of the set of vectors xn and is given by 

C
 =
 (x n x̄)(x n x̄)T (45) − −
n 

It can be shown (see Bishop [30]) that the minimum occurs when the basis vectors satisfy 

Cui = λiui (46) 

so that they are eigenvectors of the covariance matrix. Substituting (46) into (44) and 
making use of the orthonormality relation of (37), the error criterion at the minimum is 
given by 

d
1


ξp λi (47) = 
2 

i=p+1 

Thus the minimum error is obtained by choosing the d − p smallest eigenvalues, and their 
corresponding eigenvectors, as the ones to discard. 

Appendix B: 

15.9.2 Gram-Schmidt Orthogonalization Theorem 

If {x1, ..., xm} is a linearly independent vector system in the vector space with scalar prod­
uct F , then there exists an orthonormal system {ε1, ..., εm}, such that 

span{x1, ..., xm} = span{ε1, ..., εm}. (48) 

This assertion can be proved by induction. In the case m = 1, we define ε1 = x1/�x1� and 
thus span{x1} = span{ε1}. Now assume that the proposition holds for m = i−1, i.e., there 
exists an orthonormal system {ε1, ..., εi−1}, such that span{x1, ..., xi−1} = span{ε1, ..., εi−1}. 
Then consider the vector 

y = λ ε +       i 1 1 i−1 i−1 i
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choosing the coefficients λν , (ν = 1 : i − 1) so that yi ⊥ εν(ν = 1 : i − 1), i.e. (yi, εν) = 0. 
This leads to the i − 1 conditions 

λν(εν , εν) + (xi, εν) = 0, (50) 

λν = −(xi, εν) (ν = 1 : i − 1). 

Therefore, 
yi = xi − (xi, ε1)ε1 − ... − (xi, εi−1)εi−1. (51) 

Now we choose εi = yi/�yi�. Since εν ∈ span{x1, ..., xi−1}(ν = 1 : i − 1), we get, by the 
construction of the vectors yi and εi, (εi ∈ span{x1, ..., xi}). Hence 

span{ε1, ..., εi} ⊂ span{x1, ..., xi}. (52) 

From the representation of the vector yi we can see that xi is a linear combination of the 
vectors ε1, ..., εi. Thus 

span{x1, ..., xi} ⊂ span{ε1, ..., εi} (53) 

and finally, 
span{x1, ..., xi} = span{ε1, ..., εi} (54) 

An example 

Given a vector system {x1,x2,x3} in R4, where 
T T T 

x1 = [1 0 1 0] , x2 = [1 1 1 0] , x3 = [0 1 0 1] ,

such that X = [x1x2x3]

T we want to find such an orthogonal system {ε1, ε2, ε3}, for which


span{x1,x2,x3} = span{ε1, ε2, ε3}. 

To apply the orthogonalization process, we first check the system {x1,x2,x3} for linear 
independence. Next we find 

[ 
1 1 

]T 

ε1 = x1/�x1� = √
2

0 √
2

0 . (55) 

For y2 we get 

T 
y2 = x2 − (x2, ε1)ε1 = [1 1 1 0]

√
2 

[ 
1 1 

]T
T − √

2
0 √

2
0 = [0 1 0 0] . (56) 

T
Since �y2� = 1, ε2 = y2/�y2� = [0 1 0 0] . The vector y3 can be expressed in the form 

T 

[ 
1 1 

]T 
T T 

y3 = x3 − (x3, ε1)ε1 − (x3, ε2)ε2 = [0 1 0 1] − 0 · √
2

0 √
2

0 − 1 · [0 1 0 0] = [0 0 0 1] . 

(57) 
Therefore, 

ε3 = y3/�y3� = [0 0 0 1]T . (58) 
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Appendix D: 

15.9.3 Maximum Likelihood through gradient ascent 

1Recalling that for scalars
∫ 

dzδ(x−wz)f(s) = f(x/w) and adopting a conventional index |w|
m msummation such that wjizi ≡∑i wjizi , a single factor in the likelihood is given by 

m 

∫ ∞ 
m mP (x |A) = dN z mP (x |z ,A)P (z m) (59) 

m 
∏ 

m m m = x 

−∞ 

δ(xj − ajizi )
∏ 

pi(zi ) (60) 
j i 

=
1 ∏ 

pi(a
−1 (61) ij xj) | detA| 

i 

(62) 

which implies 
m 

∑
log2 P (x A) = log2 detA + log2 pi(aijxj). (63) |

ı 

Noting that W = A−1 , 

m 
∑

log2 P (x A) = log2 detW + log2 pi(wijxj). (64) |
ı 

To find the gradient of the log likelihood we define 

∂ 
log2 detA = a−1 = (65) 

∂aji 
ij wij 

∂ 
a−1 = −a−1 = −wkjwil (66) kl kj a

−
il 

1 

∂aji 

∂ 
( 

∂ 
) 

∂wij 

g = −ajl 
∂akl 

g ali (67) 

(68) 

with g some arbitrary function, wij representing the elements of W, yi ≡ wijxj and f(yi) ≡
d log2 pi(yi)/dyi. g indicates in which direction yi needs to change to make the probability 
of the data greater. Using equations 66 and 67 we can obtain the gradient of aji 

∂ 

∂aji 

log2 P (x m |A) = −wij − wify′ wi′j (69) 

where i′ is a dummy index. Alternatively, we can take the derivative with respect to aij 

∂ 

∂wij 

log2 P (x m |A) = aji + xjzi (70) 

If we choose W so as to ascend this gradient, we obtain the exact learning algorithm 
from Bell and Sejnowski [22] (ΔW ∝ [WT ]−1 + zx T ). A detailed mathematical analysis 
of gradient descent/ascent and its relationship to neural networks and PCA are given in 
appendix 15.9.4. 
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The problem of non-covariance 

It should be noted that the principle of covariance (consistent algorithms should give 
the same results independently of the units in which the quantities are measured) is not 
always true. One example is the popular steepest descent rule (see Eq. 31) which is 
dimensionally inconsistent; the left hand side has dimensions of [wi] and the right hand 
side has dimensions [wi] (Ł(W) is dimensionless). 

One method for alleviating this problem is to precondition the input data (scaling it be­
tween ±1). Another method is to decrease η at a rate of 1/n where n is the number of 
iterations through the backpropagation of the updates of the wi. The Munro-Robbins theo­
rem ([30] p.41) shows that the parameters will asymptotically converge to the maximum 
likelihood parameters since each data point receives equal weighting. If n is held constant 
then one is explicitly solving a weighted maximum likelihood problem with an exponential 
weighting of the data and the parameters will not converge to a limiting value. 

∂ŁThe algorithm would be covariant if Δwi = η
∑

i′ Gii′ ∂wi 
, where G is a curvature matrix 

with the (i, i′)th element having dimensions [wiwi
′]. It should be noted that the differential 

of the metric for the gradient descent is not linear (as it is for a least square computation), 
and so the space on which we perform gradient descent is non-Euclidean. In fact, one must 
use the natural [23] or relative [55] gradient. See [16] and [23] for further discussion on 
this topic. 

Appendix D: 

15.9.4 Gradient descent, neural network training and PCA 

This appendix is intended to give the reader a more thorough understanding of the inner 
workings of gradient descent and learning algorithms. In particular, we will see how 
the weights of a neural network are essentially a matrix that we train on some data by 
minimising or maximising a cost function through gradient descent. If a multi-layered 
perceptron (MLP) neural network is auto-associative (it has as many output nodes as input 
nodes), then we essentially have the same paradigm as Blind Source Separation. The only 
difference is the cost function. 

This appendix describes relevant aspects of gradient descent and neural network theory. 
The error back-propagation algorithm is derived from first principles in order to lay the 
ground-work for gradient descent training of an auto-associative neural network. 

The neuron 

The basic unit of a neural network is the neuron. It can have many inputs x and its output 
value, y, is a function, f , of all these inputs. Figure 9 shows the basic architecture of a 
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Figure 9: The basic neuron 

For a linear unit the function, f , is the linear weighted sum of the inputs, sometimes known 
as the activation, a, in which case the output is given by 

y = a = 
∑ 

wixi (71) 
i 

(Be careful not to confuse the activation a with the elements of the mixing matrix A = 
aij = Ŵ−1.) For a non-linear unit, a non-linear function f , is applied to the linearly 
weighted sum of inputs. This function is often the sigmoid function defined as 

1 
fa(a) = (72)

1 + e−a 

The output of a non-linear neuron is then given by 

y = fa{(
∑ 

wixi)} (73) 
i 

If the outputs of one layer of neurons are connected to the inputs of another layer, a neural 
network is formed. 

Multi-layer networks 

The standard MLP consists of three layers of nodes, the layers being interconnected via 
synaptic weights wij and wjk as shown in Figure 10. The input units simply pass all of the 
input data, likewise the non-linear output units of the final layer receive data from each of 
the units in the hidden layer. Bias units (with a constant value of 1.0), connect directly via 
bias weights to each of the neurons in the hidden and output layers (although these have 
been omitted from the diagram for clarity). 

40 

Cite as: G.D.Clifford. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image Processing,
Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on
[DD Month YYYY].



 
 

ij ij ∂wij 

41 

Cite as: G.D.Clifford. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image Processing,
Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on
[DD Month YYYY].

� �����
�������� �

� �

� �� � � 

��� � �
� � � � � �

����� 

����������� �
� �

� � �

Layer i Layer j Layer k 

� wij
� Hidden units 

� ��
� � wjk � 

������
�

�
�

��
���

�� 
��

����
������

��������� �
Input units ����� 

��
����
��

�
�� 

�� Output units���� ��
�� ���

�� �� �

������ ����������� �
�

�������
�� ��

��
� �yk = fa(ak) 

� aj yj = fa(aj) ak 
yi 

Figure 10: Schematic of a 5-3-2 multi-layer perceptron. Bias units and their weights are omitted 

for clarity. 

Learning algorithm - Gradient descent 

The input data used to train the network, now defined as yi for consistency of notation, is 
fed into the network and propagated through to give an output yk given by 

yk = fa(
∑ 

wjkfa(
∑ 

wijyi)) (74) 
j i 

Note that our x’s (observations/recordings) are now yi’s and our sources are yj (or yk if 
multi-layered network is used). During training, the target data or desired output, tk, 
which is associated with the training data, is compared to the actual output yk. The 
weights, wjk and wij , are then adjusted in order to minimise the difference between the 
propagated output and the target value. This error is defined over all training patterns, N , 
in the training set as 

p pξ = 
1 ∑∑

(fa(
∑ 

wjkfa(
∑ 

wijyi )) − tk)
2 (75)

2 
N k j i 

Note that in the case of ML-BSS the target is one of the other output vectors (source 
estimates) and the error function ξ, is the log likelihood. We must therefore sum ξ over all 
the possible pairs of output vectors. 

Error back-propagation 

The squared error, ξ, can be minimised using the method of gradient descent [30]. This 
requires the gradient to be calculated with respect to each weight, wij and wjk. The weight 
update equations for the hidden and output layers are given as follows: 

(τ+1) (τ) ∂ξ 
wjk = wjk − η (76)

∂wjk 

w
(τ+1) 

= w
(τ) ∂ξ

(77)− η



∂ξ ∂ξ The full derivation of the calculation of the partial derivatives, 
∂wij ∂wjk

and , is given in 

appendix 15.9.5. Using equations 116 and 108 we can write: 

(τ+1) (τ)
wjk = wjk − ηδkyj (78) 

w
(τ+1) 

= w
(τ) − ηδjyi (79) ij ij 

where η is the learning rate and δj and δk are given below: 

δk = (yk − tk)yk(1 − yk) (80) 

δj = 
∑ 

δkwjkyj(1 − yj) (81) 
k 

For the bias weights, the yi and yj in the above weight update equations are replaced by 
unity. 

Training is an iterative process (repeated application of equations 78 and 79) but, if con­
tinued for too long, the network starts to fit the noise in the training set and that will have 
a negative effect on the performance of the trained network on test data. The decision on 
when to stop training is of vital importance but is often defined when the error function 
(or it’s gradient) drops below some predefined level. The use of an independent validation 
set is often the best way to decide on when to terminate training. (See Bishop [30] p262 
for more details.) However, in the case of an auto-associative network, no validation set 
is required and the training can be terminated when the ratio of the variance of the input 
and output data reaches a plateau. (See [56, 57].) 

Auto-associative networks 

An auto-associative network has as many output nodes as input nodes and can be trained 
using an objective cost function measured between the inputs and outputs; the target data 
are simply the input data. Therefore, no labelling of the training data is required. An auto­
associative neural network performs dimensionality reduction from D to p dimensions 
(D > p) and then projects back up to D dimensions, as shown in figure 11. PCA, a standard 
linear dimensionality reduction procedure is also a form of unsupervised learning [30]. In 
fact, the number of hidden-layer nodes ( dim(yj) ) is usually chosen to be the same as the 
number of principal components, p, in the data (see § 15.3.1), since (as we shall see later) 
the first layer of weights performs PCA if trained with a linear activation function. The 
full derivation of PCA, given in appendix 15.9.1, shows that PCA is based on minimising a 
sum-of-squares error cost function. 
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Figure 11: Layout of a D-p-D auto-associative neural network. 

Network with linear hidden layer and output units 

Since yk = ak 
∂yk 

∂ak 

= 1 

the expression for δk reduces to 

δk = 
∂ξ 

∂ak 

= 
∂ξ 

∂yk 

. 
∂yk 

∂ak 

= (yk − tk) 

Similarly for δj: 

(82) 

(83) 

=

∂ξ 

= 
∂ξ ∂ak ∂yj

δj = . . δkwjk (84)
∂aj ∂ak ∂yj ∂aj 

k 

Linear activation functions perform PCA 

The two layer auto-associative MLP with linear hidden units and a sum-of-squares error 
function used in the previous section, learns the principal components for that data set. 
PCA can of course be performed and the weights can be calculated directly by computing 
a matrix pseudo-inverse [30], and this shall reduce ‘training time’ significantly. Consider 
Eq. (75) where the activation function is linear (fa = 1) for the input and hidden layers; 

N p D

n=1 j=1 i=0 

where p is the number of hidden units. If this expression is differentiated with respect to 
wij and the derivative is set to zero the usual equations for least-squares optimisation are 
given in the form 

N D

1

i
n wij − tn 

j )2ξ
 (
 (85)
=
 y

2


i
n wi′j − tnj )y n(
 y
 0 (86)
= i 

n=1 i′=0 

which is written in matrix notation as 

(YTY)WT = YTT (87) 
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Y has dimensions N × D with elements yn where N is the number of training patterns i 

and D the number of input nodes to the network (the length of each ECG complex in our 
examples given in the main text). W has dimension p × D and elements wij and T has 
dimensions N × p and elements tn. The matrix (YTY) is a square p× p matrix which may j

be inverted to obtain the solution 
WT = Y†T (88) 

where Y† is the (p × N) pseudo-inverse of Y and is given by 

Y† = (YTY)−1YT (89) 

Note that in practice (YTY) usually turns out to be near-singular and SVD is used to avoid 
problems caused by the accumulation of numerical roundoff errors. 

Consider N training patterns presented to the auto-associative MLP with i input and k 
output nodes (i = k) and j ≤ i hidden nodes. For the nth (n = 1...N) input vector xi of the 
i × N (N ≥ i) real input matrix, X, formed by the N (i-dimensional) training vectors, the 
hidden unit output values are 

hj = f(W1xi + w1b) (90) 

where W1 is the input-to-hidden layer i × j weight matrix, w1b is a rank-j vector of biases 
and f is an activation function. The output of the auto-associative MLP can then be written 
as 

yk = W2hj + w2b (91) 

where W2 is the hidden-to-output layer j × k weight matrix and w2b is a rank-k vector of 
biases. Now consider the singular value decomposition of X, given by [2] as Xi = UiSiVi

T 

where U is an i× i column-orthogonal matrix, S is an i×N diagonal matrix with positive 
or zero elements (the singular values) and VT is the transpose of an N × N orthogonal 
matrix. The best rank-j approximation of X is given by [58] as W2hj = UjSjVj

T where 

hj = FSjVj
T and (92) 

W2 = UjF
−1 (93) 

with F being an arbitrary non-singular j × j scaling matrix. Uj has i × j elements, Sj has 
j × j elements and VT has j × N elements. It can be shown that [29] 

= α−1FUT (94) W1 1 j 

where W1 are the input-to-hidden layer weights and α is derived from a power series 
expansion of the activation function, f(x) ≈ α0 + α1x for small x. For a linear activation 
function, as in this application, α0 = 0, α1 = 1. The bias weights given in [29] reduce to 

w1b = −α1
−1FUT

j µX = −UT
j µX , 

w2b = µX − α0UjF
−1 = µX (95) 

where µX = 
N 
1 ∑

N xi, the average of the training (input) vectors and F is here set to be 
the (j × j) identity matrix since the output is unaffected by the scaling. Using equations 
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(90) to (95)


yk = W2hj + w2b (96) 

= UjF
−1hj + w2b 

= UjF
−1(W1xi + w1b) + w2b 

= UjF
−
1

1FUT
j xi − UjF

−1UT
j µX + µX 

giving the output of the auto-associative MLP as 

yk = UjU
T(X − µX) + µX . (97) j 

Equations (93), (94) and (95) represent an analytical solution to determine the weights of 
the auto-associative MLP ‘in one pass’ over the input (training) data with as few as Ni3 + 
6Ni2 +O(Ni) multiplications [59]. We can see that W1 = wij is the matrix that rotates the 
each of the data vectors xi

n = yi
n in X into the hidden data yi

p, which are our p underlying 
sources. W2 = wjk is the matrix that transforms our sources back into the observation data 
(the target data vectors

∑
N t

n
i = T). If p < N , we have discarded some of the possible 

information sources and effected a filtering. In terms of PCA, W1 = Sp = Up p (where VT UT 

Up denotes using the pth most significant components) and in terms of BSS, W1 = Wp. 
Note also that W2 = W1

T . 

Appendix F: 

15.9.5 Derivation of error back-propagation 

The error ξ is given over all input patterns p by: 

1 nξ = 
∑∑

(yk − tn)2 (98) 
2 k

n k 

Which may be written as: 

ξ =
1 ∑∑

(fa(
∑ 

wjkfa(
∑ 

yiwij)) − tnk)2 (99) 
2 

n k j i 

To calculate the update rules the gradient of the error with respect to the weights wij 

and wjk must be calculated. The update equations (100) (101) are given below, η is the 
learning rate. 

(τ+1) (τ) ∂ξ 
wjk = wjk − η (100) 

∂wjk 

(τ+1) (τ) ∂ξ 
wij = wij − η (101) 

∂wij 
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The calculation of the gradients is performed using simple chain rule partial differentiation. 

∂ξ ∂ξ ∂yk ∂ak 
= . . (102) 

∂wjk ∂yk ∂ak ∂wjk 

The input to the output units ak is given by 

ak = 
∑ 

yjwjk (103) 
j 

From (98) and (103) we may write 

∂ξ ∂ak 

∂yk 

= (yk − tk), 
∂wjk 

= yj (104) 

Since yk is defined as 
1 

yk = fa(ak) = (105) 
1 + e−ak 

We may write 
∂yk ∂ 1 e−ak 

∂ak ∂aa 

(
1 + e−ak 

) =
(1 + e−ak)2 

= yk(1 − yk) (106) = 

Hence 
∂ξ 

∂wjk 

= (yk − tk)yk(1 − yk)yj (107) 

Therefore we may write the wjk update as 

(τ+1) (τ)
w = wjk − ηδkyj (108) jk 

Where 
∂ξ ∂yk ∂ξ 

∂yk ∂ak ∂ak 

= (yk − tk)yk(1 − yk) (109) . =δk = 

In order to calculate the wij update equation the chain rule is applied several times, hence 

∂ξ ∂ξ ∂aj
= . (110) 

∂wij ∂aj ∂wij 

∂ξ ∂ξ 
. 
∑

( 
∂ak ∂yj ∂aj

= ). . (111) 
∂wij ∂ak ∂yj ∂aj ∂wij 

k 

From (103) 
∂ak 

∑
= wjk (112) 

∂yj 
k 
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The input to the hidden units is given by 

aj = 
∑ 

yiwij (113) 
i 

Hence 
∂aj 

= yi (114) 
∂wij 

By symmetry from (106) we have 

∂yj 

∂aj 

= yj(1 − yj) (115) 

Therefore from Eq.s (109),(112),(114) and (115) the update equation for the wij weights 
is given by 

(τ+1) (τ)
wij = wij − ηδjyi (116) 

Where 
∂ξ ∑

δj = 
∂aj 

= δkwjkyj(1 − yj) (117) 
k 

Appendix G: 

15.9.6 Orthogonal rotation matrices 

The classical (orthogonal) three-dimensional rotation matrices are 

 
1 0 0 

  
cos(θ) 0 sin(θ)

  
cos(θ) − sin(θ) 0 

 

Rx(θ) = 0 cos(θ) − sin(θ),Ry(θ) = 0 1 0 ,Rz(θ) = sin(θ) cos(θ) 0 , 
0 sin(θ) cos(θ) − sin(θ) 0 cos(θ) 0 0 1 

(118) 

where Rx(θ), Ry(θ) and Rz(θ) produce rotations of a 3-D signal about the x-axis, y-axis 
and z-axis respectively. 
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