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Chapter 11 - RANDOM SIGNALS: BASIC PROPERTIES 

c©Bertrand Delgutte 1999 

Introduction 

In the preceding chapters, we have assumed that signals can be completely specified as either 
discrete or continuous functions of time. Such complete mathematical specifications are rarely, 
if ever, available for signals recorded from living systems. Far more commonly, signals are 
characterized by a set of properties or features. For example, we might know that the EKG 
consists of more-or-less regular peaks not exceeding 100 mv in amplitude, or that speech has 
most of its energy below 10 kHz. Because such characterizations are incomplete, there will in 
general exist a large class, or ensemble of signals that share these properties. 

When an ensemble of signals characterized by certain properties is processed by a dynamic 
system such as a linear filter, response signals will form another ensemble characterized by 
a new set of properties. Our task here and in Chapter 12 will be to determine properties 
of the ensemble of response signals from knowledge of properties of the input ensemble and 
system characteristics. Alternatively, we will design systems such that the output signals have 
certain desired properties, given a set of input properties. While these tasks cannot be solved 
in general, when the known input properties are long-term time averages, and the system has 
special properties (such being linear or memoryless), it will be possible to specify certain time 
averages of the response signals. 

Signals described in terms of averages are called random signals, random processes, or stochastic 
processes. The term “random” is used because the waveforms of such signals are typically irreg
ular and complicated. This term does not necessarily imply that such signals are unpredictable. 
More often than not, it means that, for a specific purpose, only an appropriate set of averages 
needs to be known for a class of signals. For example, it might be possible to completely spec
ify a speech signal if we knew the motions of the articulators for all times, and such detailed 
information would be of great value to speech scientists. On the other hand, for an engineer 
who is designing a telecommunication system, knowledge of the long-term average spectrum 
of speech might suffice. To give another example, the electrocardiogram might be predictable 
from the electrical potentials of every cardiac muscle fibers, but such knowledge would be too 
cumbersome for deciding whether a patient needs a pacemaker. Thus, it is perfectly appropriate 
to model the same signal as being random for one particular purpose, and as being deterministic 
(i.e. completely specified mathematically) for another purpose. In short, the applicability of 
random signal models is a matter of attitude, not an inherent property of signals. 

The study of random signals is part of probability theory. Probability is a branch of mathematics, 
and therefore starts from specific assumptions (axioms) to obtain results (theorems) by deduc
tion. In this chapter and in Chapter 12 we will assume that certain average properties of a class 
of signals are known, apply a known transformation to these signals, and deduce appropriate 
averages for the transformed signals. Specifically, this chapter introduces basic definitions and 
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properties of random signals, while Chapter 12 treats the processing of random signals by linear 
systems. In Chapter 13, we will also consider how the infinite-time averages that are assumed to 
be known in probability theory can be estimated from finite data. The problems of estimating 
infinite averages from finite data, and of making reliable decisions on the basis of incomplete or 
noisy  data belong to the  subject  matter  of  statistics. 

11.1 Time averages 

11.1.1 Definition 

The time-average or mean of a discrete random signal x[n] is defined as: 

� 1 N 

< x[n] > = lim x[n] 	(11.1)
N→∞ 2N + 1  

n=−N 

This definition is meaningful only if the limiting operation in (11.1) is well defined. Therefore, 
when we use time-averages, we restrict our attention to the class of signals for which such a limit 
exists. This class will include for example periodic signals: For such signals, the time average 
is the DC Fourier coefficient X0. On the other hand, time averages are not defined for signals 
that grow monotonically with time (such as exponential signals), or finite-duration signals. In 
general, the notion of time average is most useful for signals that are stationary, i.e. signals 
whose characteristics do not change over long time intervals. This limitation is not as restrictive 
as it may appear because, in many instances, time-varying signals can be considered to be 
approximately stationary for certain time intervals. This is for example the case for speech 
signals because the motions of the articulators are slow relative to the time constants of the 
vocal-tract resonances. 

The time-average of a continuous-time signal x(t) is  

� 1 ∫ T 
< x(t) > = lim x(t) dt	 (11.2)

T →∞ 2T −T 

Because properties of time averages for continuous-time signals are similar to those for discrete-
time signals, we will only state results for the discrete-time case. 

11.1.2 Properties of time averages 

Two basic properties of time averages are used to derive time averages for combinations and 
transformations of signals: 

1.	 Stationarity: Time averages do not change if signals are delayed by any number n0 of 
samples: 

< x[n− n0] > = < x[n] > = µx	 (11.3) 
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The short-hand notation µx makes stationarity of the mean apparent. Stationarity is easy 
to prove for the practically-important case of bounded signals: 

1 n0+N 

< x[n− n0] > = lim x[n]  (11.4)
N→∞ 2N + 1  

n=n0−N


Assuming that n0 > 0, the sum in (11.4) can be decomposed into three terms:


n0+N N n0+N n0−N−1


x[n] =  x[n] +  x[n] − x[n] 
n=n0−N n=−N n=N+1 n=−N 

Dividing each term by 2N + 1 and taking the limit, the first term on the right tends to 
x[n], while the last two terms tend to zero because the sum over a finite number n0 of 
bounded terms is bounded. 

2. Linearity: The time average of a weighted sum of signals is the weighted sum of the 
averages: 

< ax[n] +  by[n] > = a < x[n] > + b < y[n] > (11.5) 

for a and b arbitrary constants. 

11.1.3 Averages of functions of a signal 

The notion of time-average can be generalized to functions of a signal (Fig. 11.1A): 

� 1 N 

< g(x[n]) > = lim g(x[n]) (11.6)
N→∞ 2N + 1  

n=−N 

For example, the mean power of a signal is the time average of its square (Fig. 11.1B): 

� 1 N 

Px = < x[n]2 > = lim x[n]2 (11.7)
N→∞ 2N + 1  

n=−N 

The mean AC power is the average of the square of the signal once the DC component (i.e. the 
mean) has been subtracted out (Fig. 11.1C): 

2 � 
σx = < (x[n] − µx)2 > (11.8) 

The average AC power is also called the variance, and its square root σx is the standard deviation. 
The total power is the sum of the AC power and the DC power: 

Px = σx 
2 + µx 

2 (11.9) 

This can be verified by applying the linearity property to the definition of the AC power: 

σx 
2 = < (x[n]−µx)2 > = < x[n]2−2µxx[n]+µ 2 

x > = < x[n]2 > −2µx < x[n] > + < µ2 
x > = Px−µ 2 

x 

In this derivation, we have assumed that < µx > = µx because the mean of a constant signal 
is that constant. 
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11.1.4 Time averages and probabilities 

Time averages are closely related to the notion of probability. Intuitively, the probability of 
an event is the limit of the frequency of occurrence of that event when the number of trials 
becomes large. To see the relation between probabilities and time averages, consider the average 
of u(x[n]), where u(x) is the unit step function (Fig. 11.2): 

1 N 

< u(x[n]) > = lim u(x[n])
N→∞ 2N + 1  

n=−N 

The function u(x[n]) is always equal to either 1 when x[n] ≥ 0 or 0 otherwise. Therefore 
the sum in the above equation is the number of samples over the interval [−N, N ] for  which  
x[n] ≥ 0: 

number of samples in [−N,N ] for  which  x[n] ≥ 0 
u(x[n]) = lim 

N→∞ total number of samples in [−N, N ] 
This formula means that < u(x[n]) > is the limit for large N of the frequency of occurrence 
of non-negative samples, i.e. the probability that x[n] is non-negative, P (x[n] ≥ 0). More 
generally, given an arbitrary “threshold” X0, the probability that x[n] is greater than or equal 
to X0 is given by the time average: 

P (x[n] ≥ X0) =  < u(x[n] −X0) > (11.10) 

This computation is shown in Fig. 11.1D. The probability that x[n] is between the two thresholds 
X1 and X2 is: 

P (X1 ≤ x[n] ≤ X2) =  < ΠX1,X2 (x[n]) > 

where { 

ΠX1,X2 (X) 
� 1 if X1 ≤ X ≤ X2= 

0 otherwise 

Thus, for our purposes, probabilities are special time averages. 

11.1.5 Chebyshev’s inequality 

Variances and probabilities are related by an important inequality due to Chebyshev. This 
inequality provides an upper bound on the probability that a signal x[n] deviates from its mean 
by more than an arbitrary amount ε: 

P (|x[n] − µx| ≥ ε) ≤ 
σ2 

x 

ε2 (11.11) 

To prove this inequality, we consider the signal: 

y[n] = (x[n] − µx)2 

From the definition of the variance (11.8), we see that y[n] =  < σx 
2 >. For any threshold ε2 , 

y[n] is always greater than the rectangular signal that is equal to the threshold ε2 when y[n] is  
above threshold, and to zero otherwise (Fig. 11.3): 

ε u y n − ε ≤ y n

 

2 ( [ ] 2) [ ] 
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Replacing y[n] by its definition in terms of x[n], and taking time averages, we obtain


ε2 P (x[n] − µx)2 ≥ ε2 ≤ σx 
2 

Dividing by ε2, and noting that P ((x[n] − µx)2 ≤ ε2) =  P (|x[n] − µx| ≤ ε), we obtain 
(11.11), completing the proof of Chebyshev’s inequality. 

It is remarkable that Chebyshev’s inequality holds for arbitrary random signals. However, 
for specific classes of signals, tighter bounds can often be obtained. For example, according 
to Chebyshev’s inequality, the probability that a signal deviates from its mean by more than 2 
standard deviations is less than 25%. For Gaussian signals (see Sec. 11.4.3), this probability is ac
tually less than 5%. Rather than being a practical bound, Chebyshev’s inequality is theoretically 
important, because it justifies the common mathematical practice of least squares estimation. In 
many applications, a desired signal y[n] must be approximated by a signal ŷ[n]. Least-squares 

estimation consists in minimizing the variance of the error signal e[n] = y[n] − ŷ[n]. Minimiz
ing the variance makes sense because, according to Chebyshev’s inequality, the error signal is 
unlikely to be large if its variance is small. Examples of least-squares estimation are presented 
in Chapters 12 and 13. 

11.2 Autocorrelation functions 

Averages of functions of random signals that were considered in the previous section (such as 
means, variances, and simple probabilities) depend only on the present value of the input signal, 
and are therefore called memoryless. For digital filters, on the other hand, outputs generally 
depend on past values of the input as well as on its present value (the only exception is a 
pure gain). Thus, in order to process random signals by digital filters, we need to define time 
averages that characterize how rapidly signals vary with time. Specifically, if a signal reaches a 
certain value X at time n, it is likely to remain in the vicinity of X for times shortly following 
n. In other words, signal samples separated by short intervals are not, in general, independent 
from one another. Therefore we need to know time averages characterizing these dependencies 
(or correlations) between samples taken at different times. The most important of these time 
averages is the autocorrelation function. 

11.2.1 Filtering a random signal 

To demonstrate how autocorrelation functions arise, consider the simple, first-order FIR filter 
whose output y[n] is defined as a function of the input x[n] by the difference equation: 

1 
y[n] =  (x[n] +  x[n− 1]) (11.12)

2 

Knowing the mean of the input signal suffices to compute the mean of the output signal: 

1 1 
µy = < (x[n] +  x[n− 1]) > = (< x[n] > + < x[n− 1] >) =  µx2 2
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However, the output power cannot be computed from the input power alone: 

� 1 1 
Py = < (x[n] +  x[n− 1])2 > = < x[n]2 > + < x[n− 1]2 > + 2  < x[n] x[n− 1] >

4 4 

Using the time-invariance property of averages, this becomes: 

1 
Py = (Px+ < x[n] x[n− 1] >)  (11.13)

2

Thus, we must know not only the input power Px, but also the time average < x[n]x[n− 1] > 
in order to compute Py. More generally, if the input signal is to be processed by an N th-order 
FIR filter: 

N 

y[n] =  bk x[n− k] 
k=0 

then time averages of the form < x[n]x[n− k] > must be known for all 0 ≤ k ≤ N in order to 
compute the output power. 

11.2.2 Definition of autocorrelation and aurocovariance functions 

The above arguments lead us to define the autocorrelation function of a discrete random signal 
x[n] as the time average 

Rx[k] = < x[n] x[n− k] > (11.14) 

By the time-invariance property of time averages, the autocorrelation function does not depend 
on absolute time n, only on the time separation, or lag k. Intuitively, the autocorrelation 
function measures the resemblance between successive samples of a signal. If the signal varies 
slowly, samples at time n and time n− 1 will be nearly always of the same sign, and the mean of 
their product Rx[1] will be large. Conversely, if a zero-mean signal varies rapidly, even samples 
separated by short intervals will be equally likely to be of the same sign or of opposite signs, so 
that the autocorrelation function will approach zero. Fig. 11.1E shows a signal flow diagram for 
computing the autocorrelation function for one particular lag k. 

A time average closely related to the autocorrelation function is the autocovariance function 
Cx[k], which is the autocorrelation function of the signal minus its mean: 

Cx = < (x[n] − µx)(x[n − k] − µx) > = Rx[k] − µ 2 (11.15)[k] � 
x 

Being an autocorrelation function, the autocovariance function has the same properties as au
tocorrelation functions. 

11.2.3 Properties of autocorrelation and autocovariance functions 

1. Autocorrelation functions are even functions of lag: 

Rx[−k] =  < x[n]x[n+ k] > = < x[n− k]x[n] > = Rx[k]  (11.16) 
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2.	 The autocorrelation function evaluated at the origin is the mean power, and the autoco
variance function is the variance: 

Rx[0] = < x[n]2 > = Px	 (11.17a) 

Cx[0] = < (x[n] − µx)2 > = σx 
2	 (11.17b) 

3. Autocorrelation functions are always maximum at the origin: 

|Rx[k]| ≤  Rx[0] −∞  < k  < ∞ (11.18) 

This property is a special case of the Cauchy-Schwarz inequality, which states that, for 
arbitrary random signals x[n] and  y[n], one has: 

< x[n] y[n] >2 ≤ < x[n]2 > < y[n]2 > (11.19) 

To show this, consider the following time average: 

< (ax[n] +  y[n])2 > = a 2 < x[n]2 > + 2a < x[n] y[n] > + < y[n]2 > (11.20) 

where a is a parameter. This quadratic function of a must always be positive because it is 
the time average of a positive function. Therefore, its discriminant D must be nonpositive: 

D = < x[n] y[n] >2 − < x[n]2 > < y[n]2 > ≤ 0  (11.21) 

Rearranging terms yields (11.19). Eq. (11.18) is obtained by letting y[n] =  x[n − k] in  
(11.19). 

4. For large lags, the autocovariance function of a signal having no periodic component ap
proaches zero: 

lim Cx[k] = 0  (11.22a) 
|k|→∞ 

In other words, samples of a random signal separated by large lags are uncorrelated. This 
fits with the intuitive notion that random signals must have irregular, unpredictable wave
forms. From (11.18) and (11.15), it follows that the limit of the autocorrelation function 
for large lags is the square of the mean: 

lim Rx[k] =  µx 
2	 (11.22b) 

|k|→∞ 

5.	 A random signal w[n] is  said to  be  white if its autocovariance function is an impulse at 
lag 0: 

σ2 if k = 0  
C	 [k] =  σ2 δ[k] =  w (11.23a)w w 0 otherwise 

From (11.15), if a white signal is in addition zero-mean, its autocorrelation function is an 
impulse at the origin. In general, the autocorrelation function of a white signal is the sum 
of an impulse and a constant: 

2 2Rw[k] =  σw δ[k] +  µw	 (11.23b) 

The term “white” comes from the fact that such signals have energy at all frequencies, 
just as white light contains all visible wavelengths. White noise plays a fundamental role 
in random-signal theory because random signals with arbitrary frequency spectra can be 
generated by passing white noise through appropriate linear filters. Many physical and 
biological signals can be modeled as white noise. Examples include the thermal noise 
across a resistor, or the acoustic signal produced by uttering the sound “FF”. The signal 
produced by an ideal random noise generator is white noise. 
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11.2.4 Autocorrelation examples 

1. The autocorrelation function of a sine wave is a cosine at the same frequency.	 Specifically, 
let s[n] be a sinusoidal signal with frequency f : 

s[n] =  A sin(2πfn + φ) 	(11.24) 

Its autocorrelation function is 

Rs[k] =  < A2 sin (2πfn + φ) sin  (2πf [n + k] +  φ) > 

Making use of a trigonometric identity and the linearity of time averages, this becomes 

A2 

Rs[k] =  (< cos 2πfk > − < cos(2πf [2n + k] + 2φ) >)
2 

The first term depends only on lag k, not on time n, and its mean is therefore constant. 
The second term is sinusoidal function of n, which has zero mean. Therefore, 

A2 

Rs[k] =  cos 2πfk (11.25)
2 

Note that the autocorrelation function does not depend on phase φ, and  that  Rx[0] is the 
mean power A2/2, as expected. The autocorrelation function of a sine wave is shown in 
Fig. 11.4A. 

2.	 The autocorrrelation function of a periodic signal with period N is also periodic with 
period N : 

if x[n+ N ] =  x[n], then Rx[k + N ] =  < x[n]x[n+ k + N ] > = < x[n]x[n+ k] > = Rx[k] 
(11.26) 

Fig. 11.4B show the waveforms and autocorrelation functions of two periodic signals, a sine 
wave and a 3-component signal. In Sec. 11.3.4, we apply this property to the detection of 
periodic signals in noise. 

3. To illustrate the use of autocorrelation functions, we continue the example of a random 
signal processed by the simple FIR filter (11.12). From (11.13) and (11.14), the mean 
power of the output signal is 

1 
Py = (Rx[0] + Rx[1])2 

Two extreme cases can be considered: 

1. If the input is white and zero-mean, then Rx[1] = 0, so that the output power is half 
the input power. This shows that a smoothing filter such as (11.12) is useful in reducing 
interference by zero-mean, white noise. 

2. If consecutive samples of the input are strongly correlated (i.e., if Rx[1] ≈ Rx[0]), then 
the output power is nearly equal to the input power, and the filter will not be effective in 
reducing noise. 

Note however, that, in the case of white noise, passing the signal through the filter a second 
time results in a smaller reduction in noise power than the factor of 2 achieved in the first 
pass. This is because the filter introduces correlation between successive samples, that is, 
Ry[1] = 0, as shown in Fig. 11.4C. 

 

�
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4. For a slightly more elaborate example, consider the signal y[n] obtained by passing zero
2mean, white noise with variance σw through a first-order, recursive digital filter: 

y[n] =  a y[n− 1] + w[n]  (11.27) 

The autocorrelation function Ry[k] can be evaluated by inspection in this simple case. 
More general techniques will be given in Chapter 12. The basic idea is to first evaluate 
Ry[0], then obtain Ry[k] by induction on k. To  evaluate  Ry[0], we start from the difference 
equation (11.27): 

Ry[0] = < y2[n] > = < (ay[n− 1] + w[n])2 > 

Making use of linearity, this becomes 

Ry[0] = a 2 < y2[n− 1] > + < w2[n] > + 2a < w[n]y[n − 1] > 

Further making use of stationarity, we get 

2R 2Ry[0] = a y[0] + σw + 2a < w[n]y[n− 1] > 

The last term in the sum is zero because y[n− 1] depends only on the past values, 
w[n− 1], w[n− 2], w[n− 3], . . ., but not on the present value w[n]. Since, w[n]w[n− i] = 0  
for i � [n]y[n− 1] is also zero. Therefore, rearranging terms, = 0 (zero-mean white noise), w

we obtain:


σ2 

Ry[0] = w (11.28)
1 − a2 

Ry[k] can now be derived from Ry[0] by induction on k. Again, we start from the difference 
equation, which is multiplied by y[n− k], then time-averaged: 

Ry[k] =  < y[n]y[n− k] > = < ay[n− 1]y[n− k] +  w[n]y[n− k] > 

Making use of linearity and stationarity, we obtain 

Ry[k] =  a < y[n− 1]y[n − k] > + < w[n]y[n − k] > = aRy[k − 1] + < w[n] y[n− k] > 

If k > 0, the quantity < w[n]y[n − k] > is zero for the same reason as < w[n]y[n − 1] > 
above. Therefore, Ry[k] =  aRy[k − 1] for k > 0 and, by induction on k, 

σ2 

Ry[k] =  a|k|Ry[0] = a|k| w (11.29)
1 − a2 

The autocorrelation function Ry[k] is shown in Fig. 11.4D for several values of a > 0. The 
larger a, the more correlated (the less white) y[n] becomes. 

11.3 Crosscorrelation functions 

11.3.1 Filtering a sum of random signals 

In many applications, one is not dealing with a single random signal, but with combinations of 
signals. For example, the signal x[n] recorded from the chest of a human subject can be modeled 
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σxσy 

From (11.37), the correlation coefficient is bounded between -1 and 1. 

 

as the sum of the electrocardiogram s[n] and a noise (disturbance) d[n] reflecting the activity of 
other muscles as well as noise generated by the amplifier: 

x[n] =  s[n] +  d[n]  (11.30) 

We process this signal through a digital filter in the hope of improving the signal-to-noise ratio. 
In order to express the signal-to-noise ratio in the filter output, we will need to know the 
autocorrelation function of x[n]: 

Rx[k] =  < x[n]x[n+ k] > = < (s[n] +  d[n]) (s[n+ k] +  d[n+ k]) > (11.31) 

Making use of (11.14), this becomes: 

Rx[k] =  Rs[k] +  Rd[k] +  < s[n] d[n+ k] > + < d[n] s[n+ k] > (11.32) 

This relation can be concisely written by defining the crosscorrelation function of two random 
signals x[n] and  y[n]: 

[k] � 
Rxy = < x[n] y[n+ k] > = < x[n− k]y[n] > (11.33) 

Just as the autocorrelation function is a measure of the dependence between successive samples 
of a single signal, the crosscorrelation function Rxy[k] measures the resemblance between the 
signal x[n] and a delayed version of y[n]. Often, a large correlation between two signals indicates 
that they have a common source. For example, the input and the output of a filter, or the outputs 
of two filters that have the same input are in general correlated. Making use of the definition of 
the crosscorrelation function, Equation (11.32) becomes: 

Rx[k] =  Rs[k] +  Rd[k] +  Rsd[k] +  Rds[k]  (11.34) 

A close relative of the crosscorrelation function is the crosscovariance function, which is the 
crosscorrelation function of the centered signals x[n] − µx and y[n] − µy: 

Cxy[k] 
� 

< (x[n] − µx)(y[n + k] − µy) > = Rxy[k] − µxµy (11.35)= 

11.3.2 Properties of crosscorrelation and crosscovariance functions 

1. Unlike autocorrelation functions, crosscorrelation functions are not even. In fact, 

Rxy[−k] =  < x[n]y[n− k] > = < x[n+ k]y[n] > = Ryx[k]  (11.36) 

2. From Schwarz’ inequality (11.19), it is clear that crosscorrelation functions obey the fol
lowing inequality: 

|Rxy[k]|2 ≤ Rx[0]Ry[0] (11.37) 

The correlation coefficient ρxy[k] is the crosscovariance function normalized by the product 
of the standard deviations: 

ρ = 
Cxy[k] (11.38)[k] 

� 

Cite as: Bertrand Delgutte. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image Processing, Spring
2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. 

10



 R
∑ A2

x[k] =  i cos 2πik/N (11.42)
2 

i=0 

Specializing this relation for k = 0 gives Parseval’s theorem for discrete Fourier series. 

∑ 

3. Two signals are said to be uncorrelated if their crosscovariance function is zero for all k. 
Often, this indicates that the signals are generated by independent processes. For exam
ple, the electrocardiogram is uncorrelated with 60-Hz noise, or with the EMG potentials 
produced by other muscles. On the other hand, the heart rate signal is correlated with 
breathing rate because, through the autonomic nervous system, breathing influences heart 
rate. From (11.35), if two signals are uncorrelated, and at least one of them is zero-mean, 
then their crosscorrelation function is zero for all lags. 

11.3.3 Crosscorrelation examples 

1. If x[n] and  y[n] are two sine waves with different frequencies, they are uncorrelated. On 
the other hand, the crosscorrelation of two sine waves having the same frequency is a sine 
wave at the same frequency. Specifically, let 

x[n] =  Ax sin (2πfxn + φx)  (11.39a) 

and 
y[n] =  Ay sin (2πfyn + φy)  (11.39b) 

The crosscorrelation function is 

Rxy[k] =  < x[n] y[n + k] > = AxAy < sin(2πfxn + φx) sin(2πfy[n + k] +  φy) > 

Applying a trigonometric identity, this expression can be decomposed into a difference of 
fy =two sine waves with frequencies fx − and fx + fy, respectively. If fx � fy, both  of  

these terms are sinusoidal functions of n, so that their means are both zero, and Rxy[k] is  
also zero. If, on the other hand, fx = fy = f , the first term is a function of k, not  n, 
so that 

Rxy[k] =  
Ax Ay cos (2πfk + φy − φx)  (11.40)
2 

Note that, unlike the autocorrelation function, the crosscorrelation function depends on 
the relative phase φy − φx. We show below that this result has applications to the 
detection of sinusoidal signals in noise. 

2. Let x[n] be a periodic signal expressed as a discrete Fourier series: 

∞ 

x[n] =  Ai sin(2πin/N + φi)  (11.41) 
i=0 

From the previous example, all the frequency components are uncorrelated with each other. 
Therefore, the autocorrelation function Rx[k] is the sum of the autocorrelation functions 
of all the sinusoidal components. From (11.25), the autocorrelation of a sine wave is a 
cosine. Thererfore ∞   
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3. If	 y[n] is obtained by delaying x[n] by  n0 samples (i.e. y[n] =  x[n − n0]), then the 
crosscorrelation function of the two signals is maximum for k = n0: 

Rxy[k] =  < x[n]y[n+ k] > = < x[n]x[n+ k − n0] > = Rx[k − n0]  (11.43) 

From (11.18), Rx[k − n0] is  maximum  for  k = n0. This result has applications in radar 
and sonar engineering, where the delay between the emission and the echo is the measure 
of the distance to the target. Bats excel at determining the distance of a target (e.g. a fly) 
by crosscorrelating their own vocalization with the received echo. In order to determine the 
location of sound sources in space, the brain performs a kind of crosscorrelation operation 
on the neural outputs of the two ears, thereby estimating the interaural time difference. 

4. We now return to the problem of filtering the electrocardiogram signal x[n] =  s[n] +  d[n]. 
If the signal s[n] and  the noise  d[n] are uncorrelated, then (11.34) becomes: 

Rx[k] =  Rs[k] +  Rd[k] 	(11.44) 

Suppose now that this signal is processed by the first-order FIR filter defined by (11.12). 
The mean power in the output signal is: 

1	 1 1 
Py = (Rx[0] + Rx[1]) = (Rs[0] + Rs[1]) + (Rd[0] + Rd[1]) (11.45)

2	 2 2 
This is the sum of a term due to the signal and a term due to the noise. If we further 
assume that s[n] varies slowly, then Rs[1] ≈ Rs[0]. On the other hand, in many cases the 
noise will be almost white, so that Rd[1] ≈ 0. If these two assumptions are verified, the 
output power becomes: 

1 
Py ≈ Ps + Pd	 (11.46)

2 
Thus, before filtering, the signal-to-noise ratio is P

P
d

s , while after filtering, it becomes 2 P
P

d

s . 
In other words, for this particular (and extreme) set of assumptions, filtering results in a 
3-dB improvement in signal-to-noise ratio. In contrast, if the signal and the noise were 
strongly correlated, it would be difficult to improve the signal-to-noise ratio by filtering 
because any filter would have similar effects on the signal and the noise. Chapter 12 
introduces general techniques for designing filters that do the best job of separating signal 
from noise. 

5. Consider two uncorrelated signals u[n] and  v[n]. We form two new signals x[n] and  y[n] 
from the sum and difference of u[n] and  v[n], respectively: 

x[n] =  u[n] +  v[n], and y[n] =  u[n] − v[n] 

Then, the crosscorrelation function of the two new signals is: 

Rxy[k] =  < x[n]y[n+ k] > = < (u[n] +  v[n])(u[n + k] − v[n + k]) > 

Making use of linearity, this becomes 

Rxy[k] =  < u[n]u[n+k] > + < v[n]u[n+k] > − < u[n]v[n+k] > − < v[n] v[n+k] > 

Rxy[k] = R u[k] +  Rvu[k] − Ruv[k] − Rv[k]


Since Ruv[k] = 0, this simplifies to:


Rxy[k] = R u[k] − Rv[k] 

Thus, x[n] and  y[n] are correlated because they both depend on u[n] and v [n]. 
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� 

11.3.4 Detection of a sine wave in noise 

Let s[n] =  A cos (2πfn + φ) be a sinusoidal signal buried in additive, zero-mean noise d[n]. 
Further assume that the signal and the noise are uncorrelated. We will show that the signal 
can be recovered exactly by forming the crosscorrelation function between the noisy signal and 

the unit cosine wave c[n] = cos  2πfn with the same frequency as s[n]. The crosscorrelation 
function is: 

Rcx[k] =  < c[n](s[n + k] +  d[n + k]) > = Rcs[k] +  Rcd[k]  (11.47) 

The second term is zero because c[n] and  d[n] are uncorrelated. (Otherwise, s[n] and  d[n] would  
also be correlated, which is against our assumption.) Therefore 

Rcx[k] =  Rcs[k] =  A/2 cos  (2πfk + φ)  (11.48) 

which is equal to s[k] within a factor of 2. Although, in principle, the signal can be recovered 
exactly, in practice, it is only possible to average over a finite time, so that some noise will always 
remain even after crosscorrelating. Figure 11.5A shows the waveform of a sinusoidal signal buried 
in noise, while Fig. 11.5B shows an estimate of the crosscorrelation Rcx[k] based on a large 
number of signal samples. Clearly, the sine wave is much more visible in the crosscorrelation 
function than in the original signal. 

A major difficulty with this method is that, in many cases, the period of the signal is not known 
in advance. In such cases, a second method based on the autocorrelation function can be applied 
for detecting periodicities in a noisy signal. Specifically, suppose that the signal x[n] is  the  sum  
of a periodic component s[n] and a zero-mean disturbance d[n] which is uncorrelated with s[n]. 
The autocorrelation function is: 

Rx[k] =  Rs[k] +  Rd[k] +  Rsd[k] +  Rds[k]  (11.50) 

The last two terms are zero because the signal and the noise are uncorrelated. The autocor
relation function of the disturbance signal Rd[k] tends to fall off with increasing lag so that, 
if |k| is greater than a certain value k0, Rd[k] ≈ 0. In that range of lags, Rx[k] ≈ Rs[k], 
which is a periodic function of lag. Therefore, it will be easier to detect periodicities from the 
autocorrelation function Rx[k] than from the original signal x[n]. Once periods are identified, 
the first method based on crosscorrelation can be used to recover each periodic component of the 
signal. Figure 11.5D shows an estimate of the autocorrelation function of the noisy sinusoidal 
signal shown on top. Note that information about the phase of the sine wave is lost. This is not 
true for the crosscorrelation method of Fig. 11.5B. 

11.4 Probability density functions 

11.4.1 Definition 

While autocorrelation functions play a key role in describing the responses of linear filters to 
random signals, these functions are less useful for nonlinear systems. For example, knowing the 
autocorrelation function of the input x[n] does not, in general, allow us to compute the power 
at the output of the simple nonlinear system y[n] =  x[n]2 . In the special case of memoryless 
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systems, however, there is a family of time averages which plays a role similar to that of the 
autocorrelation function for linear systems, in that it can be used to compute the means and 
mean powers of the output signals: This is the (first-order) probability density function (p.d.f). 
We have seen in Sec. 11.1 that the probability that the signal x[n] is between X and X + ∆X 
is the time average of a rectangular function of width ∆X: 

P (X ≤ x[n] < X  + ∆X) =  < Π∆X (x[n] − X) > (11.51a) 

where	 { 

) 
� 1 if 0 ≤ x < ∆X

Π∆X (x =	 (11.51b)
0 otherwise 

The probability density function fx(X) is obtained by dividing this probability by the interval 
width ∆X, then taking the limit when ∆X approaches 0: 

� 1	 1 
fx(X) = lim P (X ≤ x[n] < X  + ∆X) = lim < Π∆X (x[n] − X) > 

∆X→0 ∆X	 ∆X→0 ∆X 
(11.52) 

The rectangular function ∆
1 
X Π∆X (x) that is being averaged has area 1 for all values of ∆X. 

Therefore, in the limit when ∆X tends to zero, this function tends to a unit impulse δ(X). This 
means that the probability density function can formally be written as the time-average of a δ 
function: 

fx(X) =  < δ(x[n] − X) >	 (11.53) 

The probability density function fx(X) is the probability that the signal amplitude x[n] lies 
in a very narrow interval centered at x[n] =  X, divided by the width of this interval. The 
lower-case x in fx(X) refers to the random signal x[n] that is being averaged, while the upper 
case X refers to the center of the interval for which the probability is computed. Thus, there 
is no relation between the two X’s, and, for example, fy(X) ∆X would refer to the probability 
that the signal y[n] lies in an interval of width ∆X centered at X. Figure 11.6 illustrates in a 
concrete way how the p.d.f. can be considered as the limit of a time average. 

11.4.2 Properties of probability density functions 

1. Because the p.d.f. is the time-average of a non-negative function of x[n], it must also be 
non-negative: 

fx(X) ≥ 0 for all X (11.54) 

2. From the definition of the p.d.f.	 (11.52), it is clear that the probability that x[n] lies in 
the interval [X1, X2] is obtained by integrating the p.d.f. over this interval: 

∫ X2 

P (X1 ≤ x[n] ≤ X2) =  fx(X) dX	 (11.55) 
X1 

3.	 Specializing (11.55) to the case when either edge of the interval is infinite gives: 
∫ X 

P (x[n] ≤ X) =  fx(V ) dV	 (11.56a) 
−∞ 

 ∞ 
P (x[n] ≥ X) =

∫
 fx(V ) dV	 (11.56b) 

X 
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4. Further specializing (11.56b) to the interval [−∞, 
 

∞] gives  ∫ ∞ 
fx(X) dX = 1 	 (11.57) 

−∞ 

because the probability that x[n] lies between −∞ and ∞ is always 1. This relation justifies 
the term probability density function. 

11.4.3 Examples of probability density functions 

1. The uniform p.d.f. over the interval [a, b] (Fig. 11.7a): 
   

{ 1 if 
(

� a ≤ X 
f

≤ b 
x X) = b − a	 (11.58)

0 otherwise 
Most random number generators produce signals with a uniform p.d.f. between 0 and 1. 

2. The binomial p.d.f. is a weighted sum of two impulses at X = 0 a nd X  = 1:  

fx(X) = (
� 1  − p) δ(X) + p δ (X − 1)	 (11.59) 

Binomial random signals can be generated by repeated flipping a coin, and, on the nth 
drawing, setting x[n] to either 0 or 1 when “tail” or “head” is drawn, respectively. Then, 
the parameter p is the probability of “head”, and (1 − p) the probability of “tail”. It can 
be verified that the mean of a binomial signal is p and the variance p (1 − p). Binomial 
random signals can be used to model the discharge patterns of auditory neurons in response 
to acoustic stimuli. In this case, p represents the probability that a spike discharge occurs 
over a short time interval. 

3. The exponential p.d.f. (Fig. 11.7b): 

fx(X) =
� 

 λ e−λX u(X) .60) 

Both the mean and the variance of an exponentially-distributed random signal are equal 
to the parameter λ. The exponential p.d.f. is an approximate characterization of the 
interspike interval distribution for auditory-nerve fibers. 

4. By far	 the most important of all probability density functions is the Gaussian p.d.f 
(Fig. 11.7c): 

1 2 

( ) = − (X − µ)

fx X  √ e  2 2 σ (11.61)
2πσ 

It can be verified that the parameters µ and σ are respectively the mean and standard 
deviation of the signal. Gaussian random signals are often good models for physical or 
biological signals because, according to the central limit theorem if many different signals 
with arbitrary p.d.f.’s are added together, then the p.d.f. of their sum approaches a 
Gaussian p.d.f. This situation is applicable, for example, to the evoked potential, which is 
a sum of potentials produced by many millions of neurons. 

5. The chi-squared p.d.f. (Fig. 11.7d): 

( ) =
� 1 

f Y/2σ
y Y  √ e− u(Y ) .62)

2πY σ 

If x[n] is a zero-mean Gaussian signal with variance σ2, then y [n] =  x[  n]2 has a chi-squared 
p.d.f. with parameter σ. 

	(11

	(11
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∑ 

11.4.4 Deriving time averages from probability density functions 

While we have defined probability density functions as time-averages of functions of a signal, it 
is also possible to derive the mean from the p.d.f: ∫ ∞ 

< x[n] > = Xfx(X)dX (11.63) 
−∞ 

In this context, the term expected value, which is often defined by (11.63), is just another name 
for the mean of a random signal. 

A formal proof of (11.63) can easily be given using δ functions. The first step is to write x[n] 
as a superposition of δ functions, much as we did to derive the convolution formula for linear 
filters: ∫ ∞ 

x[n] =  X δ(x[n] − X) dX (11.64) 
−∞ 

Taking the time average, and noting that, because integrals are linear operations, they commute 
with time averages, we obtain ∫ ∞ 

< x[n] > = X < δ(x[n] − X) > dX  (11.65) 
−∞ 

Remembering from (11.53) that < δ(x[n] − X) > = fx(X) completes the proof of (11.63). 

We will now sketch a more intuitive proof for (11.63). For this purpose, we return to the 
definition of the time average: 

1 N 

< x[n] > = lim x[n]  (11.1)
N→∞ 2N + 1  

n=−N 

The result of summing over 2N + 1 terms does not depend on the order in which the terms 
are summed, and, in particular, we can sum over increasing values of the amplitude x[n] rather  
than over increasing values of time n. Specifically, we divide the range of signal amplitudes into 
small adjacent intervals of width ∆X centered at Xi = i ∆X 

 
N  ∞   ∑

x[n] =  
n= N i=


−

∑
] x[n  (11.66) 

−∞ Xi−∆X/2 <x

∑
[n] ≤ Xi+∆X/2 




Assuming that ∆X is small enough that all values of x[n] within the interval [Xi − ∆X/2, Xi + 
∆X/2] can be approximated by the center of the interval Xi, this sum can be approximated by: 

N  ∞  ∑
x[n] ≈ 

∑
Xi ( Number of samples in [−N,N ] for w hich X i − ∆X/2 < x[n] ≤ Xi +∆X/2 )  

n=−N i=−∞ 

(11.67) 
Dividing this expression by 2N + 1, and taking the limit for large N , we obtain: 

∞  
< x[n] > ≈ 

∑
Xi P (Xi − ∆X/2 < x[n] ≤ Xi +∆X/2) (11.68) 

i=−∞ 
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When ∆X becomes very small, the probability that x[n] lies in the interval of width ∆X centered 
at Xi approaches fx(Xi) ∆X: 

∞  
< x[n] > ≈ 

∑
Xi fx(Xi) ∆X (11.69) 

i=−∞ 

In the limit, the sum over i approaches an integral over Xi, and we obtain (11.63). 

11.5 Memoryless transformations of random signals 

11.5.1 P.d.f for a memoryless transformation of a random signal 

A major application of probability density functions is that, if the p.d.f. of a signal x[n] is  
known, then we can compute the p.d.f. for the signal obtained by processing x[n] through an 
arbitrary memoryless function g(X). Specifically, let y[n] =  g(x[n]), and assume for simplicity 
that g(X) is a monotonic function of X. The probability that x[n] lies in the small interval 
[X, X + dX] is equal to the probability that y[n] lies in the interval [g(X), g(X + dX)]. 
Defining Y = g(X), this gives: 

fx(X) dX = fy(Y ) |dY | = fy(Y ) |g(X + dX) − g(X)| (11.70) 

Introducing the derivative g′(X), this becomes: 

fx(X) dX = fy(Y ) |g ′(X)| dX (11.71) 

Rearranging terms gives the final result: 

f (X) 
fy(Y ) =  x (11.72)|g′(X)| 

In the general case when g(X) is not a monotonic function of X, there is no longer a one-to-one 
correspondence between X and Y . The p.d.f. fy(Y ) is then equal to a sum of terms as in (11.72) 
for all the points Xi such that g(Xi) =  Y . 

11.5.2 Examples of memoryless transformations 

1. Linear transformation. If y[n] =  a x[n] +  b, (11.72) gives: 
  

1 Y − b 
fy(Y ) =  f|a|  (11.73)

 x

(
a 

)

2. Logarithmic transformation. Assume that x[n] has a uniform p.d.f. between 0 and 1, and 
that 

y[n] =  − log(x[n])/λ. (11.74) 

Two cases need to be considered: If Y < 0, there is no X between 0 and 1 such that 
Y = − log(X), so that fy(Y ) =  0. I f Y  ≥ 0, there is always a unique X between 0 




Cite as: Bertrand Delgutte. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image Processing, Spring
2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. 

17



p.d.f. is uniform:  {
1/Q if − Q/2 < X   Q/2 

fq(X) =  
≤

(11.80)
0 otherwise 

Applying (11.79) to the function g(X) = X 2 in order to obtain the mean power: 

  ∞ 1 Q/2 Q2 

Pq =
� 

 [    < q n]2 > = 
∫

X2 f (X  dX = 
∫

X2
q ) dX = (11.81) 

−∞ Q −Q/2 12 




and 1 such that Y = − log(X)/λ. One then has X = e−λY , and  |g′(X)| = 1/λX. 
Furthermore, because x[n] is uniform between 0 and 1, fx(X) = 1. Thus, from (11.44), 

fy(Y ) =  fx(X)/|g ′(X)| = λ X  = λ e−λY (11.75) 

Combining the two cases when Y < 0 and  Y ≥ 0, we conclude that y[n] has an 
exponential p.d.f with parameter λ: 

fy(Y ) =  λ e−λY u(Y )  (11.76) 

This example illustrates how a uniform p.d.f can be changed into an exponential p.d.f. by 
an appropriate memoryless transformation. Such techniques can be used for generating 
signals with any desired p.d.f. using a random number generator that produces a signal 
with a uniform p.d.f. 

11.5.3 Mean of a function of a random signal 

Taken together, (11.63) and (11.72) make it possible to compute the mean of an arbitrary 
memoryless transformation of a random signal. Specifically, let y[n] =  g(x[n]). From (11.72), 
we have: ∫ ∞ 

< g(x[n]) > = < y[n] > = Y fy(Y )dY (11.77) 
−∞ 

Using (11.63), we can express fy(Y ) dY as a function of fx(X), where X = g−1(Y ), so that 
|dX| = dY/|g′(X)|: 

fy(Y ) dY = fx(X)/|g ′(X)| dY = fx(X) |dX| (11.78) 

Replacing fy(Y ) dY by its value gives the desired result: 
∫ ∞ 

< g(x[n]) > = g(X) fx(X) dX (11.79) 
−∞ 

11.5.4 Example: Mean power of quantization noise 

As an example of the application of (11.79), we will compute the mean power of the quantization 
error signal introduced in Chapter 1. It was argued that the error signal q[n] is equally likely to 
take any values between −Q/2 and  Q/2, where Q is the quantization step. In other words, its 
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When two random signals are jointly present, we need to know not only the autocorrelation 
function of each signal, but also their crosscorrelation function Rxy[k] =  < x[n]y[n + k] >. 
The crosscorrelation function is related to the autocorrelation functions by the Cauchy-Schwarz 
inequality: 

|Rxy[  k]|2 ≤ Rx[0] Ry[0] 

Crosscorrelation functions are useful for time-delay estimation and for detecting periodic signals 
with known period in additive noise. 

For memoryless systems, the appropriate set of time averages is the probability density function 
fx(X): 

1 
fx(X) =

� 
 lim < Π (x[n]  X) > 
∆X 0 ∆ ∆   X→ X

−
The p.d.f. can be used to compute time averages of outputs of arbitrary memoryless systems 
y[n] =  g(x[n]) by means of the formula: 

 ∫ ∞ 
< g(x[n]) > = g(X) fx(X) dX 

−∞ 

Further, if g(X) is monotonic, the p.d.f. for the output signal is 

fx(X) 
fy(Y ) =  , where X =� g−1(Y )|g′(X)| 

11.A Ensemble averages 

A limitation of the preceding results is that, because time averages eliminate all information 
on the time variations of the statistical characteristics of the signals, the time-average model is 




∑ 

11.6 Summary 

A signal is said to be random if it is characterized in terms of average properties rather than 
complete mathematical specifications. For our purposes, it suffices to consider time averages 
defined by: 

� 1 N 

< x[n] > = lim x[n]
N→∞ 2N + 1  

n=−N 

Time averages possess the two basic properties of linearity and stationarity. 

There are two important classes of systems for which it is possible to compute time averages of 
the output signal in terms of appropriate averages of the input: linear, time-invariant systems, 
and memoryless systems. 

For linear systems, the autocorrelation function Rx[k] =  < x[n]x[n − k] > plays a key role in 
predicting responses to random signals. The autocorrelation function is an even function of lag 
k that is always maximum at the origin, where its value equals the mean power Px. It  is  useful  
for identifying unknown periodicities in random signals. A random signal is said to be white if 
its autocovariance function is an impulse at the origin. 
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� 

only useful for stationary random signals. There are however signals for which variations are too 
rapid for stationarity to hold, even over limited times. For such non-stationary signals, we can 
use a more abstract probabilistic model based on ensemble averages rather than time averages. 

To introduce the notion of ensemble average, consider a set of particles of gas in a rigid box. 
Each particle is constantly undergoing random Brownian motion. Conceptually, the trajectory 
of a particle can be followed over time, and its average position computed: this is the familiar 
time average. Alternatively, the average position of all the particles in the box can be determined 
at a specific time: This is called an ensemble average. Thus, the position of gas particles can 
be considered as a random function of two variables: time, and an ensemble variable identifying 
each particle. To be more specific, for each time t, we can compute the fraction of particles 
that lie between the positions X and X + ∆X along the vertical axis. In the limit when ∆X 
tends to zero, this defines a time-dependent probability density function fx(X; t). The ensemble 
average position E (x(t)) along the vertical axis, or expected value of the position can then be 
computed by means of the formula ∫ ∞ 

E (x(t)) = X fx(X; t) dX (11.A.1) 
−∞ 

This expression is formally similar to (11.63), which expresses the time-average of a random 
signal in terms of its p.d.f., but the two formulas have very different interpretations. In (11.52), 
the p.d.f. was defined as a time average, so that (11.63) expresses the consistency between two 
time averages. In contrast, (11.A.1) is a definition of the expected value from the ensemble-
average p.d.f. fx(X; t) which  is  a priori given for each time t. Thus, the p.d.f. in (11.52) 
gives no information about how the position of an individual particle might change over time, 
while that in (11.A.1) does. This distinction is made clear by the fact that the ensemble-average 
p.d.f. fx(X; t) depends explicitly on time t in addition to the position variable X, while the 
time-average p.d.f. in (11.52) does not depend on time. 

The notion of ensemble average can be extended to signals for which the definition of an ensemble 
is less obvious than for particles in a box. Suppose, for example that we record the EEG signal 
from the scalp of a patient. If we obtained another EEG record under identical experimental 
conditions, the signal would be different, but would share certain statistical regularities for every 
recording. We are thus led to consider that each EEG record is an element of the ensemble of 
signals that could have been recorded. In this case, the ensemble is not directly observable, it 
is an abstraction, a model characterizing our uncertainty about the signal. Similarly, we could 
consider each epoch of an evoked potential signal to be an element from an ensemble of signals, 
even if the epochs are in fact different segments from the same recording. A major advantage of 
introducing this abstract signal ensemble is that it allows us to model the time-dependence of 
the statistical characteristics of the signal. For example, for the evoked potential, we can now 
express the fact that the mean and variance may not be the same for every sample in the epoch. 
Despite the increased complexity of the ensemble-average model over the time-average model, 
formal results are often very similar for both models because they both use probability density 
functions. 
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Thus, the variance of y[n] increases linearly with time. Because y[n] is  a  sum o f  n Gaussian 
signals, it is also Gaussian, and its probability density function is 

1  2 

fy(Y ; n) =
Y

 √ e−  2 2nσ (11.A.8)
2πn σ 

The random signal y[n] is called a discrete-time Wiener process. It is a good model for the 
Brownian motion of a particle. Time-averages are not applicable to Wiener processes because 
these signals tend to wander farther and farther away from their mean value, as the expression 
for the variance shows. Figure 11.8 shows the waveform of a discrete-time Wiener process. 

Although the ensemble average model is more powerful than the time average model, it is not 
always easy to make practical use of this increased power because, usually, a single record of a 
random signal is available, so that only time averages can be estimated from the data. In fact, 
many useful predictions of the ensemble average model apply only to stationary, ergodic signals, 
for which the two models are equivalent. 
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 σy[n] = E (y[n]2) = n σ 2
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11.A.1 Discrete Wiener process 

To illustrate the usefulness of the ensemble average model, consider a zero-mean, stationary, 
white, Gaussian random signal x[n] with variance σ2 . Its p.d.f. is: 

1 − X2 

fx(X; n) =  √ e 2 σ2 (11.A.2)
2π σ  

For this signal, the p.d.f. does not depend on time, so that the time-average model and the 
ensemble-average model give identical results. We now define a new signal y[n] by forming  the  
sum of all samples of x[n] up  to  time  n: 

� 0 if n ≤ 0 
y[n] = ∑ n

i=1 x[i] if n >  0 
(11.A.3) 

We will compute the expected value of y[n] as well as its autocorrelation function Ry[n, m] = 
E(y[n] y[m]). In this case, the autocorrelation is a function of two variables because stationarity 
does not hold. 

n 

E(y[n]) = E(x[i]) = 0 (11.A.4) 
i=1    

n m n m  E(y[n] y[m]) = E x[i]  x[j]  = E(x[i] x[j]) (11.A.5) 
i=1 j=1 i=1 j=1 

Because x[n] is white and zero-mean, E(x[i] x[j]) is zero unless i = j, in which case it is σ2 . 
Among the n × m products in the expression for E(y[n] y[m]), the number of terms for which 
i = j is the minimum of n and m. Therefore, 

Ry[n, m] =  E(y[n] y[m]) = σ2 min(n, m)  (11.A.6) 

In particular, the variance of y[n] is:  

(11.A.7) 
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11.7 Further reading 

Siebert: Chapter 19. 
Oppenheim and Schafer: Chapter 2, Section 10, and Appendix A 
Papoulis and Pillai: Chapters 7, 9 
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Figure 11.1: Computation of time averages of random signals. A. Average of a memoryless 
function g(x[n]). B. Mean Power. C. Variance. D. P (x[n] ≥ X). E. Autocorrelation function. 
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Figure 11.2: Use of step function u(x[n]) in computing P (x[n] ≥ 0).


Figure 11.3: Signals used in proof of Chebyshev’s inequality
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Figure 11.4: A. Waveform and autocorrelation function of the sine wave sin(0.1πfn). B. Same 
as in A. for the three component signal sin(0.1πfn) + 0.5 sin(0.08πfn) + 0.5 sin(0.12πfn). C. 
Autocorrelation function of the FIR filter y[n] = 0.5(x[n] + x [n − 1]) for white noise input. D. 
Same as in C. for first-order recursive filter y[n] =  ay[n− 1] + x[n]. The autocorrelation function 
is shown for a = 0, 0.5, 0.75, 0.9. 




Cite as: Bertrand Delgutte. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image Processing, Spring
2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. 

25



Figure 11.5: A. Waveform of a sine wave buried in additive, white noise. B. Estimated cross-
correlation function between the signal in A. and the unit cosine. The estimate is based on 4000 
samples. C. Cross-correlation between white noise and unit cosine. D. Estimated autocorrelation 
function for the signal in A. E. Autocorrelation function of the white noise. 
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Figure 11.6: Measurement of the probability density function of a random signal
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Figure 11.7: Common probability density functions. A. Uniform p.d.f. for a = 4  and  b = 12. B. 
Exponential p.d.f. for λ = 1/40. C. Gaussian p.d.f. for µ = 10  and  σ = 3. D. Chi-squared p.d.f. 
for σ = 3.  
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Figure 11.8: Waveform of discrete-time Wiener process with σ = 1. Smooth lines show +/-1 
standard deviation 
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