Harvard-MIT Division of Health Sciences and Technology HST.512: Genomic Medicine Prof. Zoltan Szallasi

Children's Hospital Informatics Program

Harvard Medical School

Limitations of massively parallel technologies

Zoltan Szallasi, MD

Children's Hospital Informatics Program www.chip.org

Harvard Medical School

New technology All problems will be solved within a couple of years Realistic Expectations (limitations)

<u>Limitations</u>: (you want to make predictions)

Accuracy – noise

Sensitivity - completeness

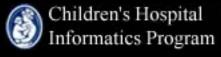
Inherent limitations – (think about unpredictability > chaos)

NOISE:

- what is noise ? (and what is signal ?)
- noise as an inherent feature of complex systems
- noise in continuous and discrete measurements
- noise as the limitation of the technology
- what can be done about noise ?
 - **Statistics**

Normalization as a way to deal with systematic errors

- **c** : an unwanted signal or a disturbance (as static or a variation of voltage) in an electronic device or instrument (as radio or television); *broadly* :
- a disturbance interfering with the operation of a usually mechanical device or system
- **d** : electromagnetic radiation (as light or radio waves) that is composed of several frequencies and that involves random changes in frequency or amplitude
- <u>e : irrelevant or meaningless data or output occurring along with</u> <u>desired information</u>



Noise may turn out to be an important signal !!!!

-Penzias and Wilson >>> cosmic background radiation

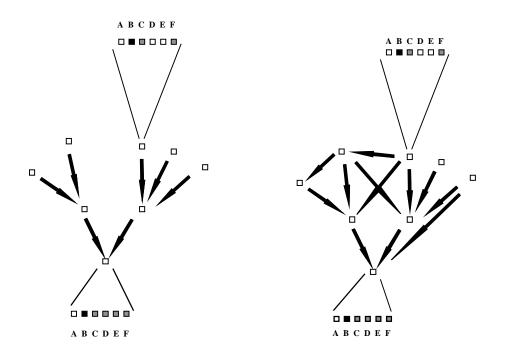
- discovery of the chemotherapeutic agent cis-platinum

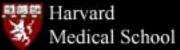
What we perceive as noise/error might be a key component of biological processes:

- 1) Mutations in evolution
- 2) "Junk" DNA
- 3) Asymmetric cell division may contribute to differentiation
- 4) Stochastic fluctuations may be important for the stability of complex physicochemical systems

Genetic networks are stochastic systems:

- 1) A couple of hundred copies of a given transcription factor/nucleus
- 2) Intracellular environment is the not a free solution
- **3)** Reaction kinetics is often slow etc.





Please see Science. 2002 Aug 16; 297(5584):1183-6.

Comment in:

Science. 2002 Aug 16; 297(5584):1129-31.

Stochastic gene expression in a single cell.

Elowitz MB, Levine AJ, Siggia ED, Swain PS.

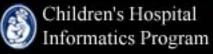
-measuring population averaged data.

That is true even if single cells are quantified due to stochasticity > two cells can get from a given state to another one via different paths

Noise in measurements

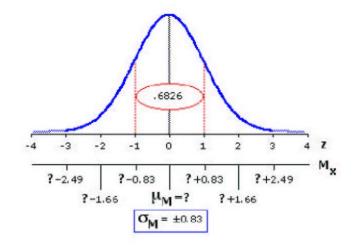
There is no measurement without noise - (it is the accuracy/sensitivity of your measurement that is low)

For continuous variables it is expected to obtain data with a certain "spread"



Consequently: Statistics was invented

- 0.5, -0.3, 0.2, 1.4, -1.5....etc what is the true value of the observed variable ?
- Did the variable change due to a given treatment? Etc.



Lots of measurements and/or fairly good idea about the nature of the noise (e.g. normal distribution)

Statistical analysis in biology:

- 1) What is the true value of a given parameter ?
- 2) the most common analysis Bayesian
- 3) You don't believe the measurements >> normalization
- 4) There are too many numbers >> permutation etc.

Biological measurements are often expensive !!!!!!!!

A large number of papers relating to cancer were published in Nature/Science based on single microarray measurements

Reliable numbers cannot be produced without replicates

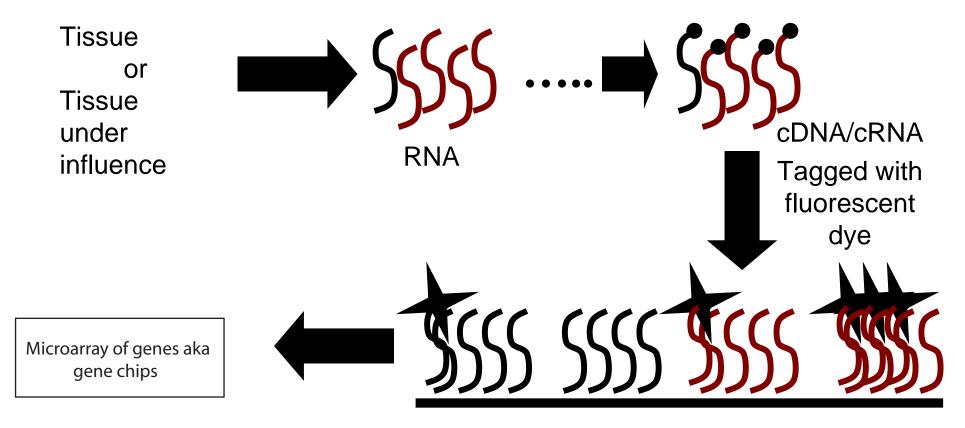
The central problem :

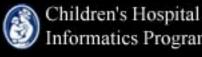
In massively parallel biological measurements quantitative or qualitative calls are supposed to be made on a large number of <u>heterogeneous</u> variables using only a few replicates.

Children's Hospital Informatics Program

Harvard Medical School

Noise of continuous variables, e.g. microarray measurements





- 1) cDNA produced from RNA (initiation of RT step, **RT might drop off etc.**)
- 2) cRNA produced in the presence of fluorescent dyes (cRNA production in not linear, Dye incorporation)
- 3) Breaking down cRNA into small pieces
- 4) hybridization/cross hybridization

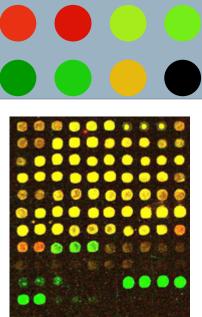
final signal =
$$\sum$$
 (all of the above)

Children's Hospital

Informatics Program

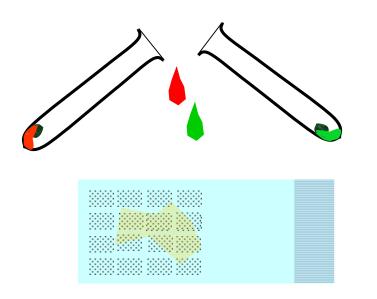
The situation is further complicated by other experimental issues >>> two-color cDNA microarray **Ratio is influenced on background calculations**

equal amounts of labelled **cDNA** samples

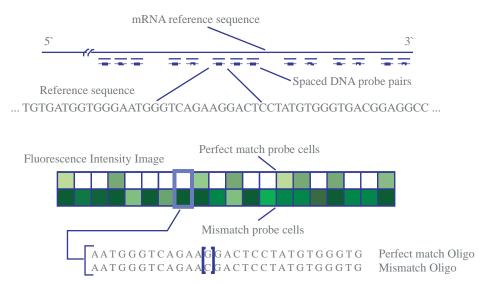


Harvard

Medical School



There is no truly blank spot !!!! **Background**

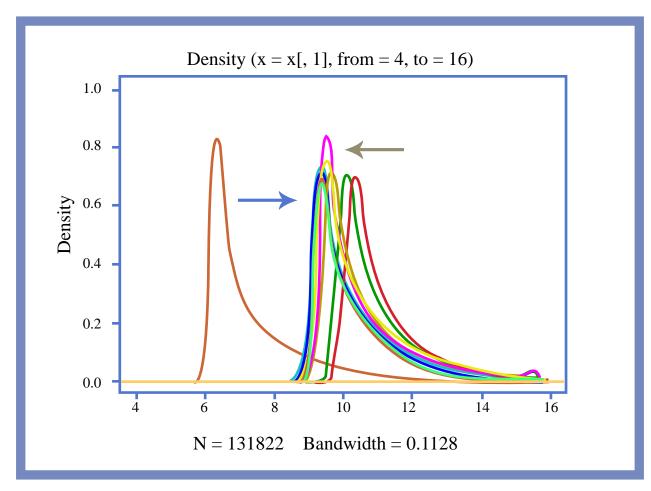


Data representation

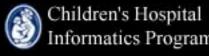
If we express gene expression measurements as "per unit RNA" then decrease in the level of a given message unavoidably leads to a relative increase in the level of other messages.

Distribution of probe intensities of several Affymetrix data sets belonging to the same set of experiment.

Systematic error



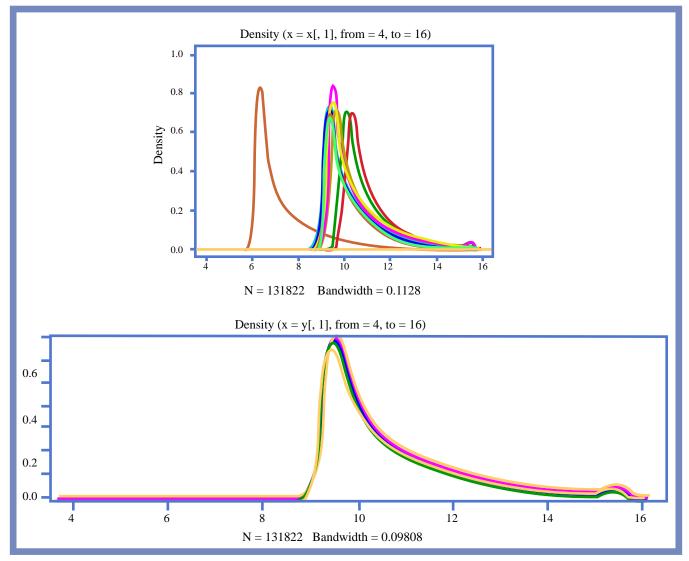
Normalization



<u>Normalization</u> – You don't believe the numbers

- 1) "most or certain things do not change"
- 2) Error model

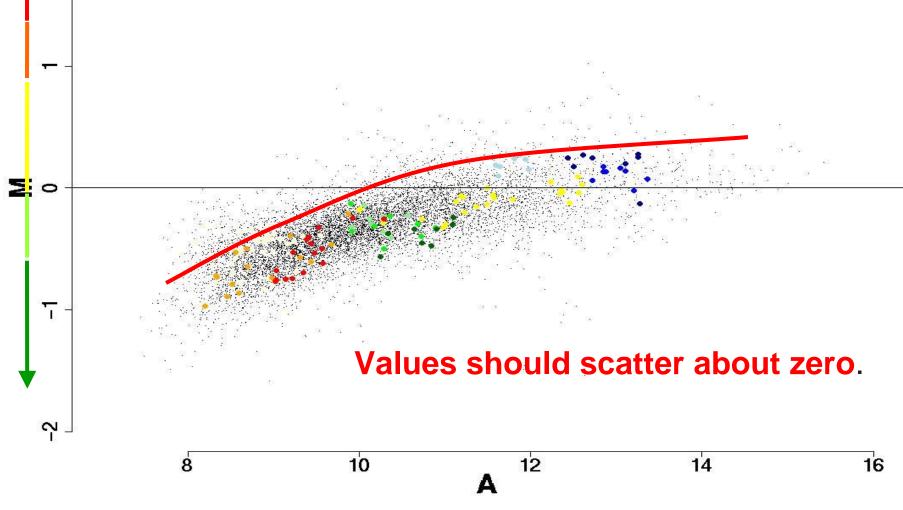
Shifting the means or medians and adjusting the distributions by Cubic spline fit/ Lowess etc. (Overfitting !!!)



Children's Hospital Informatics Program

Harvard Medical School

cDNA microarray: the R/G ratios are intensity



Courtesy of Natalie Thorne. Used with permission.

Overview of normalization:

- to correct for systematic errors
- 1) Choose a set of elements that will be used
 - housekeeping genes
 - special control genes etc.
- 2) Determine the normalization function
 - global mean/median normalization
 - intensity dependent normalization

Harvard Medical School

Microarray Gene Expression Data Society www.mged.org

Intensity dependent normalization by error models

Error model: Rocke, Vingron Low concentrations $\rightarrow x = \mu + \varepsilon$

High concentrations $\rightarrow x = \mu e^{\eta}$

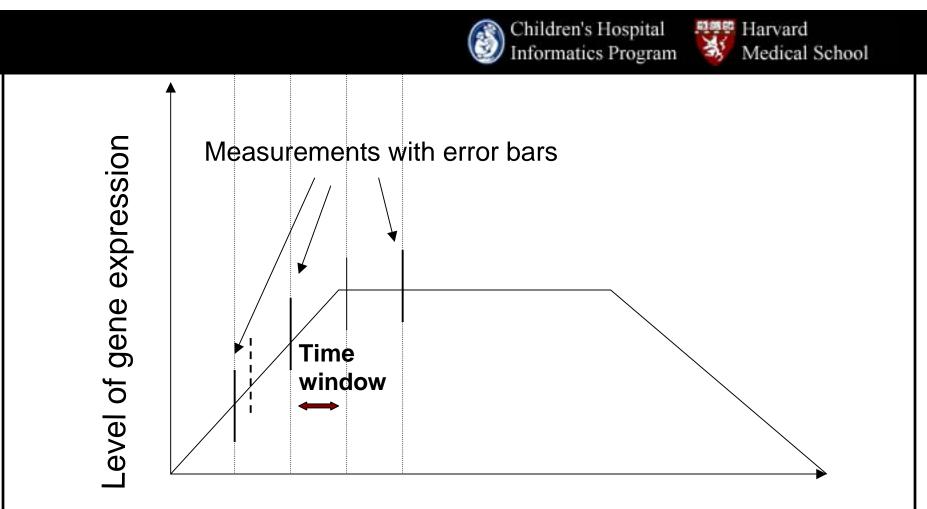
$$\mathbf{x} = \boldsymbol{\mu} \mathbf{e}^{\boldsymbol{\eta}} + \boldsymbol{\varepsilon}$$

$$\eta \sim N(0, \sigma_{\eta}^2) \qquad \epsilon \sim N(0, \sigma_{\varepsilon}^2)$$

Noise will limit the useful information content of measurements:

A reliable detection of 2-fold differences seems to be the practical limit of massively parallel quantitation.

(estimate: optimistic and not cross-platform)



Time

A rational experiment will sample gene-expression according to a time-series in which each consecutive time point is expected to produce at least as large expression level difference as the error of measurement: approximately 5 min intervals in yeast, 15-30 min intervals in mammalian cells.

<u>Limitations</u>: (you want to make predictions)

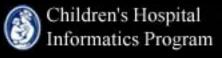
- Accuracy noise
- **Sensitivity completeness**

Inherent limitations – (think about unpredictability > chaos)

<u>Sensitivity – completeness</u>

How many parameters are we measuring ?

How many parameters should we measure ?



How many bionodes ?

Cautious estimate: on the order of 1-2x10⁵

10,000-20,000 active genes per cell

< 3 posttranslational modifications/protein in yeast

3-6 (?) posttranslational modifications/protein in humans

The number of bionodes is probably less than 10 times the number of genes

Splice variants < > modules

The coverage of microarray chips and proteomics keeps increasing >>> complete genome

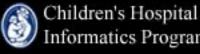
Holland MJ. Transcript abundance in yeast varies over six orders of magnitude. J Biol Chem. 2002 Sensitivity : 2 copies/cell MOST transcripts are not seen by microarray

Please see J Biol Chem. 2002 Apr 26; 277(17): 14363-6. Epub 2002 Mar 06. Transcript abundance in yeast varies over six orders of magnitude. Holland MJ.

The utmost goal of technology :

Single copy/ single cell

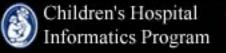
BUT even if you measure everything accurately there might be problems with predictions



Even a relatively simple set of ODEs can produce a rather strange behavior.

Edward Lorenz – 3 linked ODEs produced a behavior very sensitive to the initial conditions. (Chaos theory, Bifurcations etc.)

Small changes in the initial conditions can cause huge changes at later time points



Harvard Medical School

The problem of way too many correlated numbers:

Can this be due to chance ?

¥,

-Analytical solution

- Computational solution: **Permutate and look for similar patterns**

Medical School

In some cases analytical solution may exist Six breast cancer cell lines yielded 13 consistently mis-regulated genes (H-cadherin, S1002A, keratin 5 etc.)

Can this be due to chance?

"E" different cell lines

"N"-gene microarray

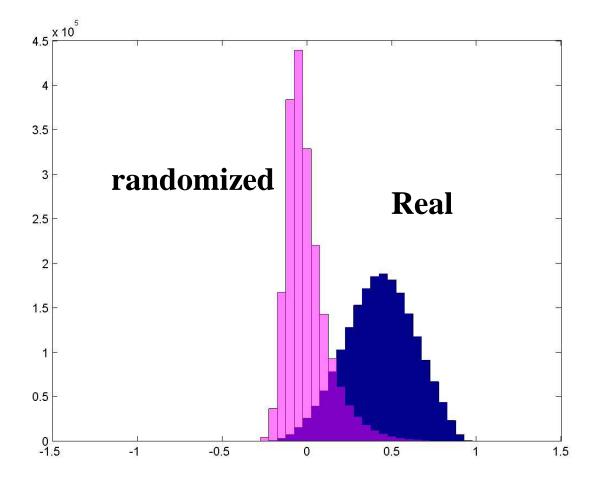
M_i genes mis-regulated in the "i"-th cell line,

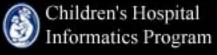
K consistently mis-regulated across all E cell lines.

What is the probability that the K genes were mis-regulated by chance ? This translates into a simple combinatorics problem

BUT !!! - what if more genes are involved

Distribution of pair-wise correlation coefficients in cancer associated gene expression data





The problem of way too many correlated numbers is a particularly nasty one.

Significance can be off by orders of magnitude when comparing completely random permutations with "structural permutations"

Noise in discrete measurements: DNA sequences

Measurement error: Sequencing errors (0.1%-1%)

Solution: sequence a lot

AAATAACTCGGTGACCAAAAAAGAGTGTGAGGATAGATGTCA GAATGGTTGCTAAGGCACCTATTATTAGGTCGCTTATTAGTTTT CATGCCGTACATTGCACCTGGCAGAACCTTGCCTTATTTCTCTGT ACATTTTTATTTTCCCGCGTGCTGCGCGGGTGTTACACTGCGTTG TGTATTGCGCTGTGCACGGGGTCTGCGTAAGCGATGTTTTAGG GCACGGTTTGCTTCTAGAGTGGCCTCTCGCTCTTTTATTACCTCG CGCTTGTCAATTAGCTTTTTACCTCGCGCAAGGGATATAAGAA GCTTCGCGCGGCCGTTCCTGAAATAAAACTTGATGGGCACCAG GGTTATACCAGG.....

3 billion

-Find genes, introns, exons, transcription factor binding sites etc.

Help can be found --- cDNA libraries etc. BUT

1) Yelin et al. Widespread occurrence of antisense transcription in the human genome. Nat Biotechnol. 2003:379-86.

~1600 ACTUALLY transcribed antisense transcriptional Units

2) Kapranov et al. Large-scale transcriptional activity in chromosomes 21 and 22. Science, 2002

As much as one order of magnitude more of the genomic sequence is transcribed than accounted for by the predicted and characterized exons.

TF binding site: TGGACT It can also be: **TGCACT**

TGG/CACT

TCG/CNCT

Try to add constraints -

- 1) Within –500 bp from the ATG
- 2) Tends to cluster in the same region

Even if you do all this you will find that many "obviously" TF binding site-looking sequences do not function as such. (due to higher level DNA organization etc.)

AND

You often do not know what sequence to start with.

- 1. Statistical overrepresentation
- 2. Cross-species conservation

You define the rules

Using artificial intelligence/Machine learning
 Hidden Markov models for exon/intron/gene identification
 (GENIE)

Pease see Nature. 2003 May 15; 423(6937): 241-54. Sequencing and comparison of yeast species to identify genes and regulatory elements. Kellis M, Patterson N, Endrizzi M, Birren B, Lander ES.

S. cerevisiae S. bayanus S. mikatae S. paradoxus

Number of genes ~ 5,500

Medical School

	1		2	3 4		56	7		8	8 1	0	11	13	15	16	17	18	19	2	1 22	23	262	627	28	29	30	31	33 32 343	6	1	YGL140C	19	YGL122C (NAB2
. cerevisiae		Н	Ж	ł	X	H				1		N					H		ł	Н	+	И	H				X	H		2	YGL139W	20	YGL121C
	1	10						1			1	-	-							10		1.11			-					3	YGL138C	21	YGL120C (PRP4
	8		-	4	1			8.		-	100	+				2			1	1			112				÷	141.0		4	YGL137W (SEC27)		YGL119W (ABC
		11	1	ł.	-		4.4	3		2	-	-	1			4				-	1	1.11	1					-	1	5	YGL135C		tW(CCA)G1
		10	1	1	1	11		2		÷.	1	+	1			<u>.</u>			0	0	1	1	11.5				1		1	8	YGL135W (APL18)		YGL118C
pavadoxus		ч	N	И	Y		4			1		N	14			1	4		K.	F	1	M	NA.				TV	4		7	YGL134W (PCL10)		YGL117W
paracterio	-		-1	i.	÷		7	H	=	<u>-</u>	-	÷	Ņ		-	<u>^</u>		-	<u>}</u>			1		-	۲	1	-Ą	-n/		8	YGL133W		
	15	12	1				1	1		2		+		1.4		š.,			14 11	÷.		1 44	113		1		1	-	1	8	YGL132W		YGL116W (CDC
	14	-33	12	11	1	11	17	1		1			**	14		2, 1	11:	1	63 44	-	t - 1	141	11.4			1 1 1 1	1	101.0 001.0	1	10	1. C		YGL115W (SNF
	8.	11		11	-	1.0	÷.,	ξ.		-		-	23	5.4		5.			- 1	-	÷ .	1.41	11.4		-		.:	101-0	-	11	YGL130W (CEG1)		YGL114W
- the base		-	Ń	ir	Ń			-	-	-	_	-v	TA.			-	A		1	in.		1	NA.				N	-1/-	1	12	a serve of a serve of		YGL113W
mikatao			_Å	п		T/	U		_	Δ		_Å	N	U		1	17		١.	1		μ.	JU.			λ_	Å	_11		13	YGL128C	30	YGL112C (TAFE
	1	13	9	1	1			1				1	-							8			-					1111	1	14		31	YGL111W
	12			63	1	***		8.				1	-	1		2				2	÷ .	1 41	-		-		1	A 49-8	1	15		32	YGL110C
	1	12	12	11		17		ξ.		-	1	-	1	11				-	ž.	29 11		1 41	11 T				-	1.44	1	18		33	YGL109W
	1	11	-	11	-	1.	1	1	_		_	-	1	1	IC.	_		4	2	1	1 -	1		_	_	-	1	11	1	100	YGL124C	34	YGL108C
bayanus		Н	Х	H	X	H	Ð			X		X			₩		H		К		H	H	D				X	-		18			YGL107C

Figure 1 Aligned ORFs across four species. A 50-kb segment of S. cerevisiae chromosome VII aligned with orthologous contigs from each of the other three species. Predicted ORFs are shown as arrows pointing in the direction of transcription. Orthologous ORFs are connected by dotted lines and are coloured by the type of correspondence: red

for 1-to-1 matches, blue for 1-to-2 matches and white for unmatched ORFs. Sequence gaps are indicated by vertical lines at the ends of contigs, with the estimated size of each gap shown by the length of the hook. See Supplementary Information for 250 such figures tiling the complete S. cerevisiae genome.

NATURE | VOL 423 | 15 MAY 2003 | www.nature.com/nature

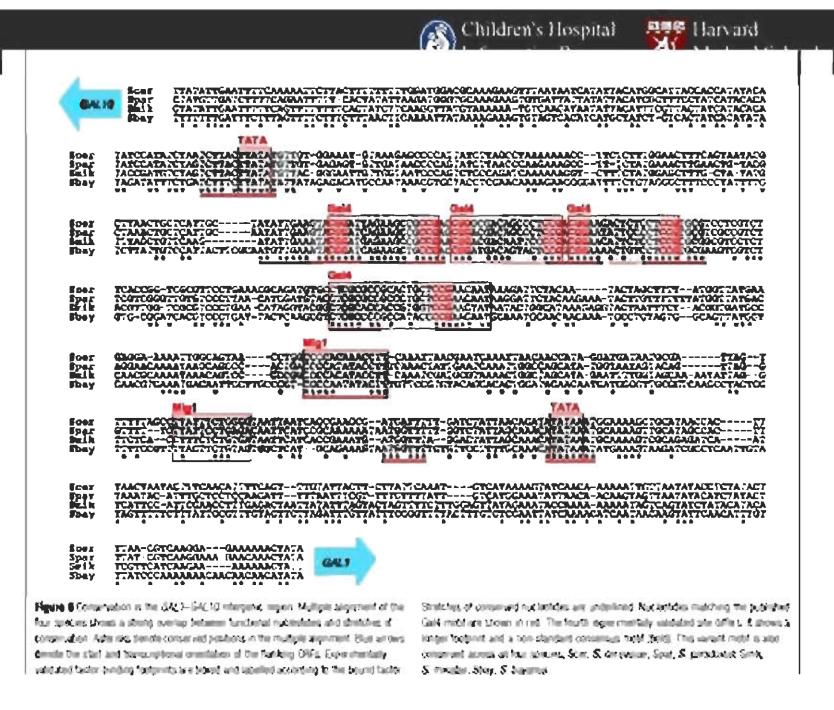
© 2003 Nature Publishing Group

Medical School

Slow and rapid evolution:

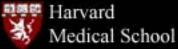
YBR184W – 32% nucleotide and 13% aa identity

MATa2 - 100 % nucleotide and 100 % aa identity !!!!!!!



Courtesy of Eric Lander. Used with permission.

Children's Hospital Informatics Program



XYZn₍₀₋₂₁₎ABC

Intergenic conservation Intergenic vs. genic conservation Upstream vs. downstream conservation

A given motif is also enriched in front of genes with similar function

le 3 Discovered motifs

Dk	scovered motif	Location*	MCS†	Best calegory1	CCS§	Interpretation
YC	GTnnnmRYGAY	5'	36.2	ChIP: Abf1	90	Known Abh
RT	TACOOGRM	5'	34.3	ChIP. Reb1	38	Known, Reb1
QC	GATGAGmtgaraw	5'	24 7	Exp., cluster 74	62	Known: Esr1 GATGAG
	GGOGGCTAWW	5'	23.4	GO meiosis	10	Known Ume6/Nat80
RT	CACGTOV	5'	17 6	CNP CBR	27	Known: Cbf1/Pho4
W	TATWTACADG	3'	57.4	Exp. cluster 16 downstream	25	New mitochondrial down
GF	RAAAWTTTTCACT	5'	15.6	Exp. cluster 74	37	Known Est2
π	OChaAttnGGAAA	5'	138	ChIP Mcm1	29	Known: Mcm1
00	STITCTITICY	5'	13.5	GO filamentation	7	New filamentation
TY	YTOGAGA	5'	12.5	Exp. cluster 86	5	Known Xbp7 (Hsf)-co-o
	TTCGCG	5'	120	ChIP Swi4	21	Known Swi4 fixed gap
	TT - COOG	5'	120	ChIP Swi4		New Swi4 variable gap
	ACGOGIT	5'	120	ChIP Mbp1	18	Known Mbo1/Swife
	GCGGnnnttTCInnG	5'	118	GO tilamentation	11	New tilamentation
	TATIGIT	5'	115	CNP Fkh2	6	New Rim1-like
	TTGCCACCG	5'	110	GO proteolysis	26	Known Ron4/Met4
516-64 L	IGITIACNITT	5'	10.8	ChIP Fkh2	28	Known Fkh1/2
	ACCCTB	5'	10.3	Sint Fishe	20	KROWE ARI
1000	COCOTOGOOM	5'	10.2	ChIP, Mbp1	17	New, double Mibp1
	3GT nACOC	5'	10.0	ChIP Reb1	8	New Reb1 paindrome
595703	ATGIGIGGGIGI	5'	9.9	ChIP Fhi1	5	Known Rap1
	TIGIGICRC	5'	99	ChIP Sum1	14	Known: Mse
	TCANCOCOC	5'	9.8	onn oann		New no category
0.03	TAWTATTAT Minalia	3	9.6			New no calegory
	XGnHQG5	5'	88	GO filamentation	6	New filamentation
	AGCOGCRY	5'	8.6	Exp. cluster 37	e	New expression cluster 3
	COCGGOGH	5'	81	Exp. cluster 46	8	Known Migib
	GTGGSGc	5*	81	ChiP Met31	5	Known Met31
	TTh(19/GCKCG	5'	7.8	Calle Moto I	č.	Known: no category
	RCOCYTWDI	5'	7.8	Exp. cluster 8	22	Known Msn2/4
	CCCnnnnGGG	5'	7.3	OhlP Mcm1	15	Known: Mcm1 (hits tRNA
	GTCAGTAAL	5'	71	ChiP Sum1	15	New Sum1
	BITTTTCCG	5	71	ChiP Rgt1	7	New Roti
	CTMGAAGA	5'	70	ChiP Han	10	Known HsD
	CGSGGS	5	87	GO filamentation	9	New filamentation
	COTTITATAC	5'	6.5	Cici indirientation	9	New no category
	OSGTANOGG	5'	6.5	ChiP Leu3	8	Known: Leu3
	CIKOCIT	5	64	GO filamentation	7	New filamentation
		5'			11	
	TATTOOOD	5'	64	Exp. cluster 8 GO filamentation	10	Known Msn2/4
	2000G	5'		GO hiamentation	10	New filamentation
30	30G0GRB	0	6.3	<u></u>	-	New: no category

Courtesy of Eric Lander. Used with permission.