Genomics, Computing, Economics & Society

10 AM Tue 27-Sep 2005

MIT-OCW Health Sciences & Technology 508/510

Harvard Biophysics 101

Economics, Public Policy, Business, Health Policy

Class outline

Photo removed due to copyright reasons.

(1) Topic priorities for homework since last class

- (2) Quantitative exercise
- (3) Project level presentation & discussion
- (4) Sub-project reports & discussion
- (5) Discuss communication/presentation tools
- (6) Topic priorities for homework for next class

(1) Topic priorities for homework since last class

(a) Your notes at top level and detailed level

(b) Follow up on the discussion on Thu: What is life?Definitions of random and complexStatistical complexity, replicated complexityCompression algorithmsExamples of test cases.

(c) Exponential growth xls example

- Snowflakes
- Mule

• Fire

Test cases for bio-complexity

Static vs dynamic

- Brain-dead
- cloned beings, parts recreating whole- cells
- ecosystem green animals symbionts
- Plant clippings (soil-dead)
- symmetry of plants & animals, Fibonacci
- gas vs crystals
- complexity function of size
- Economic systems
- Cellular Automata, Univ-Turing machines
- Logistical map
- Autonomous agents
- Quantum, crypto randomness, incompressible
- Chemical vs structural complexity
- Ideas Language memes
- viruses, DNA
- computer viruses
- religion & science memes
- Collections of ideas & cultural artefacts (books)

Photo removed due to copyright reasons.

Meta-definition issues for bio-complexity

- •Static vs dynamic
- •Environmental conditions
- Density 3 or 4 D
- Hidden simple processes random seed vs pi
- functional vs imperative languages (Walter)
- In/out complexity
- Stan Miller & origin of life
- Adjacent possible (Kaufman)
- Rate of complexity change (4th law?)
- anthropocentrism biocentrism

Photo removed due to copyright reasons.

What are random numbers good for?

•Simulations.

•Permutation statistics.

Where do random numbers come from? $X \in \{0,1\}$

perl -e "print rand(1);"0.1167907714843750.87988281250.6922912597656250.1729736328125

excel: = RAND() 0.4854394999892640 0.6391685278993980 0.1009497853098360

f77: write(*,'(f29.15)') rand(1) 0.513854980468750 0.175720214843750 0.308624267578125

Mathematica: Random[Real, {0,1}]0.74742932743696940.50817941131490110.02423389638451016

Where do random numbers come from really?

Monte Carlo.

Uniformly distributed random variates $X_i = remainder(aX_{i-1} / m)$

For example, $a = 7^5$ $m = 2^{31} - 1$

Given two X_i X_k such uniform random variates,

Normally distributed random variates can be made

(with $\mu_X = 0$ $\sigma_X = 1$) $X_i = \text{sqrt}(-2\log(X_j)) \cos(2\pi X_k)$ (<u>NR</u>, Press et al. p. <u>279-89</u>)

Class outline

- (1) Topic priorities for homework since last class(2) Quantitative exercise
- (3) Project level presentation & discussion
- (4) Sub-project reports & discussion
- (5) Discuss communication/presentation tools
- (6) Topic priorities for homework for next class

try r= 0.9, 1.01, 1.1, 1.5, 3, 3.67859, 4, 4.03 try y(i) =r*y(i-1) (i.e. A3=r*A2 etc.)

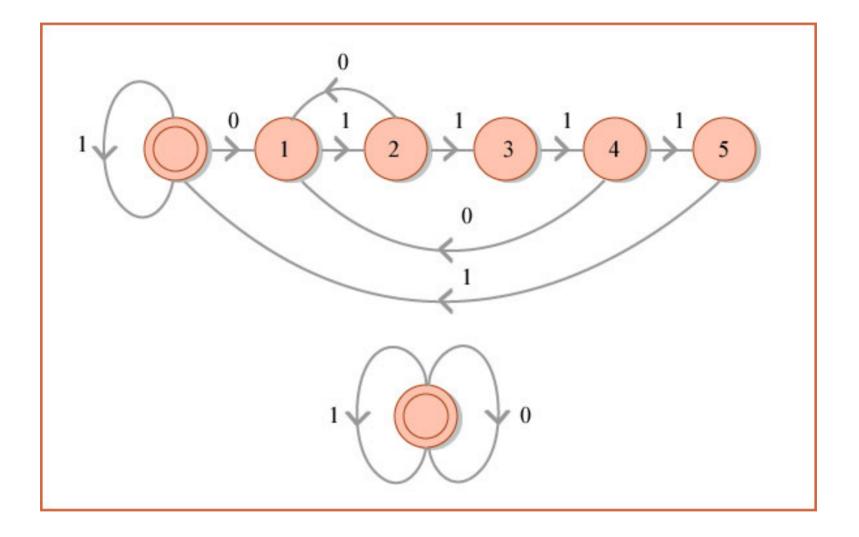


Figure by MIT OCW.