Harvard-MIT Division of Health Sciences and Technology HST.508: Quantitative Genomics, Fall 2005 Instructors: Leonid Mirny, Robert Berwick, Alvin Kho, Isaac Kohane

Biomolecular Forces and Energies

Amino Acids

Amino Acids

Name (Residue)	3-letter code	Single Code	Relative abundance (%) E.C.	MW	pK	VdW volume(Å ³)	Charged, Polar, Hydrophobic
A 1		•	12.0	71		(7	н
Alanine	ALA	A	13.0	/1	10.5	6/	H
Arginine	ARG	R	5.3	157	12.5	148	C+
Asparagine	ASN	N	9.9	114		96	Р
Aspartate	ASP	D	9.9	114	3.9	91	C -
Cysteine	CYS	С	1.8	103		86	Р
Glutamate	GLU	Е	10.8	128	4.3	109	C -
Glutamine	GLN	Q	10.8	128		114	Р
Glycine	GLY	G	7.8	57		48	-
Histidine	HIS	Н	0.7	137	6.0	118	P, C+
Isoleucine	ILE	Ι	4.4	113		124	Н
Leucine	LEU	L	7.8	113		124	Н
Lysine	LYS	K	7.0	129	10.5	135	C+
Methionine	MET	М	3.8	131		124	Н
Phenylalanine	PHE	F	3.3	147		135	Н
Proline	PRO	Р	4.6	97		90	Н
Serine	SER	S	6.0	87		73	Р
Threonine	THR	Т	4.6	101		93	Р
Tryptophan	TRP	W	1.0	186		163	Р
Tyrosine	TYR	Y	2.2	163	10.1	141	Р
Valine	VAL	V	6.0	99		105	Н

INTERACTIONS

Figure removed due to copyright considerations.

Review of Protein Structure

Secondary Structure: β-sheets

Figure removed due to copyright reasons.

Please see: Figure 6-9 in Voet, Donald, Judith G. Voet, and Charlotte W. Pratt. *Fundamentals of Biochemistry*. New York, NY: John Wiley & Sons, 2002, p. 130. ISBN: 0471417599.

Secondary Structure: β-sheets

Figure removed due to copyright reasons.

Secondary Structure: α-helices

Figure removed due to copyright reasons.

Please see: Figure 6-7 in Voet, Donald, Judith G. Voet, and Charlotte W. Pratt. *Fundamentals of Biochemistry*. New York, NY: John Wiley & Sons, 2002, p. 129. ISBN: 0471417599.

Secondary Structure: α-helices

Figure removed due to copyright reasons.

Protein Strcutures

- Protein Data Bank
 <u>http://www.rcsb.org/pdb/</u>
- Structural Classification of Proteins (SCOP) http://scop.mrc-lmb.cam.ac.uk/scop/

Forces

BONDED INTERACTIONS

NON-BONDED INTERACTIONS

- van der Waals
- Hydrogen bonds
- Hydrophobic
- Electrostatic (with screening)

Amino acids

Figure by MIT OCW.

Vibration of covalent bonds

- IR spectra of C-H : $v \sim 7x10^{13}$ s⁻¹ wave length $\lambda = c/v = 5 \ \mu m$
- IR spectra of CH3 CH3 : $v \sim 2x10^{13} \text{ s}^{-1}$ wave length $\lambda = c/v = 15 \ \mu m$
- Thermal fluctuations:

 $v \sim 7 x 10^{12} s^{-1}$

insufficient to excite

covalent bonds

Vibration of covalent angles

 IR spectra of X-Y-Z angle : v~ 10¹² - 10¹³ s⁻¹
Thermal fluctuations:

 $\nu \sim 7 x 10^{12} s^{-1}$

Sufficient to excite

<u>covalent angles,</u> <u>but fluctuations are small</u>~5°

Forces

Van der Waals
"London forces" (after Fritz London)

Van der Waals interactions

Interaction	E ₀ kcal/mo	$1 r_0, A$	r _{mi}	_n ,A Ator	nic radii ((A)
НН	0.12	2.4	2.0	H:	1.0	
НС	0.11	2.9	2.4			
сс	0.12	3.4	3.0	C:	1.5	
00	0.23	3.0	2.7	O :	1.35	
N N	0.20	3.1	2.7	N:	1.35	
$CH_2 \dots CH_2$	~ 0.5	~ 4.0	~ 3.0	CH ₂ :	~ 1.5	

$$V(r) = \frac{A}{r^{12}} - \frac{B}{r^6} = E_0 \left(\left(\frac{r_0}{r} \right)^{12} - \left(\frac{r_0}{r} \right)^6 \right)$$

Forces

Figure by MIT OCW.

SOLVENT: Hydrogen bonds

Figure removed due to copyright considerations.

Forces

 Hydrophobic interactions Walter Kauzmann energetic (<1nm) and entopic (>1nm)

	Number of		AG (kca	ΔG _{tr} (kcal/mol)	
Substitution	examples	Low	High Average		
Ile → Val	9	0.5	1.8	1.3 ± 0.4	0.80
Ile \rightarrow Ala	9	1.1	5.1	3.8 ± 0.7	2.04
Leu→Ala	17	1.7	6.2	3.5 ± 1.1	1.90
Val → Ala	11	0.0	4.7	2.5 ± 0.9	1.24
-CH ₂ -	46	0.0	2.3	1.2 ± 0.4	0.68
Met→Ala	4	2.1	4.6	3.0 ± 0.9	1.26
Phe → Ala	4	3.5	4.4	3.8 ± 0.3	2.02

Figure by MIT OCW.

 $\sim 10 \text{ cal/mol/A}^2$