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Agenda for today

1.Coalescing the coalescent: the Great Obsession;
adding complications like demographics,
recombination; how you can use the coalescent
(simulation, estimation, testing)

2. Natural selection: from the basic dynamical system
equation to the diffusion approximation: how can
genes survive?

Coalescent Summary
1.  Coalescent theory describes the genealogical relationships

among individuals in a Wright-Fisher population

2.  Sample, rather than population.

3. Retrospective (how did things get to be the way they
are?) rather than prospective (what happens if?) – better
for our situation of sampling from data.

3. That is: the coalescent model differs from the ‘classical’
random sampling gene pool model in that it gives us the
opportunity to start with polymorphism data and work
backwards – start with simplest model, if doesn’t work,
change the model

4.  Separate demography (coalescent) from genetics
(mutation) - allows to separate the two & so gives us
basic test statistics for diversity/variation (θ, π )
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The Great Obsession: variation (polymorphism)
entangled with descent

Time

Observed sample variation: is it from
descent (tree), or from biology?

2N gen
Coalescence

Two ‘competing’ stochastic processes intertwined

1. Gene trees: How long until sample sequences have common
ancestor (coalesce)?

Answer: the coalescent models the geneology of a sample of n
individuals drawn from a (putative) population of size N as a random
bifurcating tree. The n-1 coalescent times T(n), T(n-1), …, T(1) are
(to an approximation) mutually independent, exponentially
distributed random variables

Rate of coalescence for two lineages is (scaled) at 1, where this is 2N
generations; Total rate, for k lineages is ‘k choose 2’

2. Genetics: sprinkle in Poisson mutation process with rate λ=ut,
then what is expected distribution of variation?
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Expected time to coalescence

Time to coalescence for n sequences or genes
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The structure of the basic coalescent

Expected time to coalescence for 2 genes is 2N; variance 2N(2N–1)
For n sequences or genes…
If time is measured in units of 2N generations, by t’= t/2N
E[Tk, k-1]= 1/(k choose 2); variance is square of this
Time to MRCA for all genes is sum of these times, or 2(1-1/n) [again
in units of time measured in 2N, i.e., 4N(1-1/n) unscaled time

10

Estimating nucleotide divergence as θ

Generation t–1

Notation: Ti= time to collapse of i genes, sequences,…

u u

uT uT

2uT= 2u 2N = 4uN =θ
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Expected # mutations, n allele or sequence case

So this gives us the expected amount of
sequence diversity

Summary results for basic coalescent

• Expected time to coalesce, for 2 alleles, 2N

• Expected time to coalesce, all k alleles (hence avg
fixation time)

• Expected # of segregating sites

• Expected amount of sequence diversity
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Estimators for theta = 4Nu

What’s this stuff good
for?

1.Estimation
2.Simulation
3.Rejecting null model
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Basic estimation idea: find coalescents that are
‘improbable’ to detect interesting (i.e., unlikely)

patterns of mutations

This helps us untangle two sources of variation:
gene/sequence tree divergence from polymorphism

  ΘT = Average Pairwise Distance

= (1+3+3+3+2+2+2+2+2)/10=2

  A mutation on an interior branch will have higher weight

  ΘT estimated from pairwise differences
(heterozygosity)

ACCTGAACGTAGTTCGAAG
ACCTGAACGTAGTTCGAAT
ACCTGACCGTAGTACGAAT
ACATGAACGTAGTACGAAT
ACATGAACGTAGTACGAAT
  *   *      *    *
A B C D

A

B

C

D

1          2             3           4             5

(just the average heterozygosity)
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ΘW=4Νµ estimated from # segregating sites

ACCTGAACGTAGTTCGAAG
ACCTGAACGTAGTTCGAAT
ACCTGACCGTAGTACGAAT
ACATGAACGTAGTACGAAT
ACATGAACGTAGTACGAAT
  *   *      *    *
A B C D

A

B

C

D

1          2             3           4             5

Watterson, 1975

Expected number of segregating sites:

ΘW= 4/(1+1/2+1/3+1/4)=24/11=2.1818

Different coalescent patterns (relative branch lengths) yield
different estimates for theta even though total branch length

is the same and # segregating sites remains the same

Second type of mutation counted more times when calculating the average 
pairwise distance – typical when there’s a ‘burst’ after a population bottleneck

Use the difference between the two estimates to figure out a statistical measure
that can pick out these two patterns
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  ΘE = 2

No weight to internal branches

  ΘE estimated from external branches
ACCTGAACGTAGTTCGAAG
ACCTGAACGTAGTTCGAAT
ACCTGACCGTAGTACGAAT
ACATGAACGTAGTACGAAT
ACATGAACGTAGTACGAAT
  *   *      *    *
A B C D

A

B

C

D

1          2             3           4             5

Which should we use?????

Consider these coalescent pattern differences & what
they imply about possible patterns of variation

(heterozygosity) if there are neutral mutations sprinkled
on these patterns…

Note that S= # segregating sites remains the same…

Expect: more mutations on
interior branches, sample
heterozygosity higher

Expect: fewer mutations on
interior branches, sample
heterozygosity lower
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Two estimates of theta

Use of Tajima’s D
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Human mitachondrial DNA

Factors affecting test power
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Example 1 – human mitochondrial DNA

52 complete molecules

521 segregating sites

ΘT = 44.2      ΘW = 115.3

Std(ΘT−ΘW)=31.8

D = -2.23 (P<0.01)

Ingman et al. 2000

Example 2 – human Y-chromosome

3 Y-chromosome genes, 40 kb of sequence in 53
males

47 polymorphic sites

Tajima’s D: -2.3, -2.0 and –1.8 highly significant

TMRCA: No growth: 84,000 (55,000-149,000)
                Exponential: 59,000 (40,000-140,000)

With exponential growth more mutations are recent
and therefore estimated TMRCA is smaller

Thomson et al. 2000, Shen et al. 2000 
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• Ex: ~1400bp at Sod locus in Drosophila
10 taxa

5 were identical. The other 5 had 55 mutations

Q: Is this a chance event, or is there selection for this
haplotype?

Applications– Simulation for model testing

Simulation results
1. 10000 coalescent
simulations were 
performed on 10 taxa

2. 55 mutations placed on the 
coalescent branches

3. Count the number of
times 5 lineages are
identical

4.This event happened in
only 1.1% of the cases

Conclusion: selection, or
some other mechanism
explains this data – not the
neutral mutations
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Extensions to the mathematical/computational
model

1. Effective population size, not census population size

2. Demographic changes generally: population flux,
migration, gene flow

3. Recombination – turns the trees into general networks.

4. Selection–gene copies no longer act ‘independently’

5. Statistical– to get confidence limits, etc., must simulate
over many generated ‘trees’ – use likelihood methods
(Computer packages: Lamarc; Simcoal2; …)

Complications make the simple coalescent look more
complicated!  Population flow, Recombination,

Migration
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Demographic corrections
Part 1 – Effective population size, Ne

N
e
= # individuals in a theoretical population that,

subjected to the same magnitude of drift, would
present an equivalent level of diversity

Department of Corrections – does this actually work?
Estimating N from polymorphism data: must use

effective population size for theta!
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Patching the model; demographics matters

Effective population size, N
e

Working definition: the size of an ideal population that has
the same properties with respect to genetic drift as the
actual population does

Lots of ways to define what’s in italics…

1. Variance adjustment
2. Inbreeding adjustment
(first related to # of individuals in offspring generation;
second related to # of individuals in parental generation)
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Fluctuating population size

But Why do we use the harmonic
mean???

Example: if population size is 1000 w/ pr 0.9 and 100 w/ pr
0.1, arithmetic mean is 901, but the harmonic mean is (0.9 x
1/1000 + 0.1 x 1/10)-1 = 91.4, an order of magnitude less!

Thus, if we have a population (like humans, cheetahs) going
through a ‘squeeze’, this changes the population sizes, hence θ

In general:Variance effective population size
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Effective population size must be used to ‘patch’ the
Wright-Fisher model to keep the variance the same

Variance for N1 is p(1–p)/2N1 with probability r
Variance for N2 is p(1–p)/2N2 with probability 1–r
Average these 2 populations together, to get mean
variance, ‘solve’ for Ne

Var[p '] = p(1! p)
r

2N
1

+
1! r
2N

2

"

#$
%

&'
 or

N
e
=

1

r
1

N
1

+ (1! r)
1

N
2

i.e., the harmonic mean of the population sizes (the reciprocal of the average
of the reciprocals) is used because it averages the variation properly!

Always smaller than the mean; Much more sensitive to small numbers

Standard  variance is pq/N

Demographic Corrections, part 2: effects  on
coalescent
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The effect of population growth
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Try different simulations…which matches data best?
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Why is modeling selection hard with the
coalescent?

Problem: Genealogical and mutation processes no longer
independent!

Two alleles, A and a, A has an advantage of s
Mutation rate between types = u

Krone and Neuhauser 1997

Summary so far…

A strong bottleneck resembles population growth 
A weaker bottleneck resembles directional selection for
 some loci
And balancing selection for other loci
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This is where current computer packages take us!

http://evolve.zoo.ox.ac.uk/software.html?id=treevolve

Screenshots removed due to copyright reasons. 
Please see: 
University of Oxford, Department of Zoology, 
Evolutionary Biology Group: http://evolve.zoo.ox.ac.uk/software.html________________________
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Modeling natural selection: from
the simple auto mechanics or

algebra of selection to the diffusion
approximation

Evolution by natural selection
• Natural selection is the process by which individuals

contribute more or less offspring in the next generation due to
fitness differences, which can be caused by differential
viability, mating success,…

• The selection coefficient is the fitness effect of a mutation
across genetic backgrounds & environments. In a haploid
population with two alleles A and a, with fitness values w1 and
w2 , the selection coefficient is w1–w2.  Fitness values take on
arbitrary units since they are measured relative to a
population mean fitness, w-bar, which is set to 1

• If w11, w12, w22, are the fitness values associated with AA, Aa,
and aa, then:

1. If w11 < w12 < w22  there is positive, directional selection for
AA and negative, directional selection against aa

Let’s do the basic algebra, and then the
general case…
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Sewall Wright’s adaptive landscape:
Understanding the formula
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2.93
= 4.78 (4Nu) for locus

!
!  for nucleotide site= 

4.78

768
= 0.0062 }

direction

mean fitness

Some dissection…

Variance component of allele A
within genotype

Why variance?  Draw from pool of
A, a gametes many many times:
binomial sampling – frequency of A
within a genotype is either 1, 1/2, or
0; variance is p(1-p)/2
(“heterozygosity”)

Slope of fitness function divided
by mean population fitness – a
potential function?
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The new reality game show - “Survivor”
1 gene in 2 different forms (alleles)

w11 p
2 w12 2pq w22 q

2

genotype

frequency

after
selection

Viability

AA Aa aa

p2 q22pq

w11 w12 w22

survivors

Intuitively, w is a ‘growth rate’

Note that if Nt = # before selection, the total # after selection
is:

w11 p
2 w12 2pq w22 q

2

genotype

frequency

after
selection

relative
fitness

AA Aa aa

p2 q2
2pq

w11 w12 w22

What is the average (marginal) fitness of A’s?

This is the expectation that A will survive

26



Two allele case: we can now calculate p – p′ i.e., the
change in allele frequency, or evolution

Think about what this means: what if w1 is greater than average fitness? Less?

To derive the rest of the ‘jet fuel’ formula
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The ‘jet fuel’ formula

Rate proportional to difference
in relative
fitnesses

Adaptation is not instantaneous:
The ratio of p to (1-p) changes by w1/w2 every generation

After t generations,

Getting a feel for the dynamics
Genotype:   
AA Aa aa
Relative fitness: 1

1-hs 1-s1–hs= w12/w11
1–s = w22 /w11

s= selection coefficient. Measure of fitness of AA relative to aa.
If positive, aa is less fit than AA; if negative, aa is more fit
h= heterozygous effect. Measure of fitness of heterozygote relative
to selective difference between the two homozygotes –a measure of
dominance:

h=0, A dominant, a recessive
h=1, a dominant, A recessive
0< h <1 incomplete dominance
h<0  overdominance
h >1 underdominance
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Dynamical system analysis of ‘adaptive topography’
or mean fitness vs. p - nondegenerate case

Equillibrium value of p

The delta p equation in these terms (relative fitnesses)

where

h determines where allele frequency ends up;
s determines how quickly it gets there

There turn out to be three kinds of selection:
dominant (AA> Aa > aa);
overdominant (Aa> AA, aa);
underdominant (AA, aa > Aa)
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Some dissection…

Variance component of allele A
within genotype

Why variance?  Draw from pool of
A, a gametes many many times:
binomial sampling – frequency of A
within a genotype is either 1, 1/2, or
0; variance is p(1-p)/2
(“heterozygosity”)

Slope of fitness function divided
by mean population fitness – a
potential function?

Some exploration, fitness AA is 1.0; Aa = 0.95, aa= 0.90

Screenshots removed due to copyright reasons.
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Plot avg fitness vs p to get feel for the dynamics…
Note that avg fitness is a quadratic function so it can have at most 1 minimum
or maximum…

‘Degenerate’ case: quadratic mean fitness, with
w

12
= (w

11
+w

22
)/2

One locus, 2 allele case: graphs, p vs. w

p p p

‘Degenerate’ case: quadratic mean fitness, with
w

12
= (w

11
+w

22
)/2

w w w

0 1 0 01 1

frequency A frequency A frequency A

Avg fitness Avg fitness Avg fitness

Directional selection Directional selection Zip selection
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The four nonlinear cases - selection at one locus, 2 alleles - adaptive topography

! p̂ =
w
22
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12
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11
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w
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w
22
" w
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p

w

underdominance
p

w

overdominance

Directional selection

p

w

frequency A
0 1

Avg fitness w11 <  w12 = w22

p

w

0 1
frequency A

Avg fitness w11 =  w12 > w22

p

w

p

w

The four nonlinear cases - selection at one locus, 2 alleles - adaptive
topography

0 0 11

frequency A frequency A

Avg fitness Avg fitness

Balancing selection

Disruptive selection
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Climb every mountain? Some surprising results

• The power of selection: what is the fixation probability for a new mutation?

• If no selection, the pr of loss in a single generation is 1/e or 0.3679

• In particular: suppose new mutation has 1% selection advantage as heterozygote – this is a huge difference

• Yet this will have only a 2% chance of ultimate fixation, starting from 1 copy (in a finite population a
Poisson # of offspring, mean 1+s/2, the Pr of extinction in a single generation  is e-1(1-s/2), e.g., 0.3642 for
s= 0.01)

• Specifically, to be 99% certain a new mutation will fix, for s= 0.001, we need about 4605 allele copies
(independent of population size N  !!)

• Also very possible for a deleterious mutation to fix, if 2Ns is close to 1

• Why?  Intuition: look at the shape of the selection curve – flat at the start, strongest at the middle

• To understand this, we’ll have to dig into how variation changes from generation to generation, in finite
populations

Regime 1: very low
copy # Regime 2:

Frequency
matters

The fate of selected mutations

2Ns (compare to Nu factor)
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Time to fixation for selected genes:
can we find this in face of

population size, mutation, drift?

pdf for
gene freq
p

Mutation
rate to pMean

fitness

Effective
Population
size

!̂ (p) = Cw2Ne (1" p)4Neu"1 p
4Nev"1

The fixation probability of selected alleles – large population
(no effects from ‘demographic stochastics’)

Pr{Fixation}= 1–Pr{extinction} = 2s
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For N large, this is Poisson with mean 1+s,  so the # of Aa
with k surviving offspring has probability:

Assume binomial draw with N trials, pr of success on each trial is (1+s)/N

Substitute back for pk

This is a Taylor series expansion of ex so we can rewrite as:

If s is small, then expand RHS as power series in lambda, dropping
terms beyond square, ie, lambda is near 1

Solved when either λ= 1 or

So when s is small, pr of survival of new mutant is either very
nearly 2s or else 0 (if s less than 0)
When s=0.01, only 1 new mutant in 50 will succeed in
spreading, despite that all are advantageous; if s=0.1, which
fixes very rapidly in deterministic case, only 1 in 6 will win
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So, 2s turns out to be a good approximation to the exact
fixation probability for small s

# of copies of allele matters - must get over the
initial ‘hump’

Pr that n copies go extinct (since all lineages are independent):

Eg, once 100 copies present, s=0.01, pr loss is only 0.14; with 1000
copies, less than 3 x 10-9

Tells us about time course of selection with new mutation: it does
follow two regimes…

What about branching process vs. deterministic equations - the
difference is between the # of copies and the gene frequency

How do we put back drift?
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And a General Rule

But what about the interaction with drift??????

The whole banana: the
diffusion approximation
to evolutionary processes
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Our goal: how can we model the full interaction of
stochastic forces and selection, mutation,

migration…?

Our answer: write an approximating differential
equation that involves all these ‘forces’

Set to 0 and solve to find equilibrium allele frequency
distribution for p

Diffusion Theory: Conceptual Framework

The prob distribution of the # populations – i.e., the  prob
density – with different allele frequencies shifts under the
directional effects of selection & mutation (& migration)  and
flattens out under the effects of drift

u v

Integrate to find:
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Two ‘classes’ of evolutionary ‘processes’ pushing a
population into and out of a time slice of allele
frequencies from p to p+e (think of heat/water

diffusing along a pipe)

1.Directional (‘mean’) processes, M(p): nonzero
expected change in allele frequency within any one
population (selection, mutation, migration,
recombination) – measured by expected change over
one generation.

2.Nondirectional (‘variance’) processes, V(p):
produce expected changed of zero but cause
distribution to spread – all driftlike processes –
measured by expected variance in next generation

Intuitive formulation of this differential equation
 (the Kolmogorov forward equation)

Ask: How can we figure out the change in density at a region density
centered at p*?

p*+e p* p*–e  
p

Answer: it can change
either due to M(p) or
V(p) – consider in turn
what each can do by
figuring out the net
inflow-outflow that
each can produce

Inflow
Outflow
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Contribution from M(p)
 Inflow – outflow calculation into slice centered at p* for

directional evolutionary process, M(p) – shifts entire
density distribution over. Note that M(p) is the rate of flow

The direction of flow is fixed; what matters is the magnitude or
volume of the region from which it originates – the difference in
volume to the left of p* and the volume slice at p*

p*+e p* p*–e  
p

Inflow
Outflow

Therefore: (1) flow into this
region is given by density
centered at p*-e times rate of
flow at p*-e, or:

 (2) Flow out of this region
is given by density centered at
p* times rate of flow at p, or:

Putting these together:
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For nondirectional processes V(p), populations can
move either way – net flow is determined by the

difference between the differential flow to the left of
p* and the differential flow to the right of p*, i.e., the

2nd derivative wrt p

Further, there’s a factor
of only 1/2 because: only half
the populations diffusing 
out from, say, p*-e go to p*

The Kolmogorov forward equation

Now solve for equilibrium by setting this 0….
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Solution for equilibrium frequency

Setting this to 0 and integrating first term over all values of p
(since the eqn holds for all values of p, we get:

This can be solved by standard means…

The Grail Quest ends…

Well, almost… let’s solve this for particular case of M and V

(selection + mutational change f/back)

(variance in Wright-Fisher model)
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!̂ (p) = Cw2Ne (1" p)4Neu"1 p
4Nev"1

Drift wins when 4Neu« 1

!̂ (p) = Cw2Ne (1" p)4Neu"1 p
4Nev"1

Figure removed due to copyright reasons.
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Balancing selection Directional selection

Drift wins when 4Ne« 1
Cannot say how effective selection is without knowing
effective population size!!!

!̂ (p)"
e
4Nesp(1# p)

p(1# p)

!̂ (p)"
e
4Nesp

p(1# p)

For next time:
OK, how do we use this stuff to
figure out whether selection’s
been at work????

Figures removed due to copyright reasons.
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To think about from Nature

“Protein sequences evolve through random mutagenesis
with selection for optimal fitness” – Russ, Lowery,
Mishra, Yaffe, Ranganathan, sept. 2005, 437:22, p. 579.
Natural-like function in artificial WW domains.
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