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HST.508: Genomics and Computational Biology 

Protein2: Last week's take home lessons


• Separation of proteins & peptides 
• Protein localization & complexes 
• Peptide identification (MS/MS) 

– Database searching & sequencing. 
• Protein quantitation 

– Absolute & relative 
• Protein modifications & crosslinking 
• Protein - metabolite quantitation 
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Net1: Today's story & goals


• Macroscopic continuous concentration rates

– Cooperativity & Hill coefficients 
– Bistability 

• Mesoscopic discrete molecular numbers 
– Approximate & exact stochastic 

• Chromosome Copy Number Control 
• Flux balance optimization 

– Universal stoichiometric matrix 
– Genomic sequence comparisons 

2 



Networks Why model?


Red blood cell metabolism Enzyme kinetics (Pro2) 
Cell division cycle Checkpoints (RNA2) 
Plasmid Copy No. Control Single molecules 
Phage λ switch Stochastic bistability 
Comparative metabolism Genomic connections

Circadian rhythm Long time delays 
E. coli chemotaxis Adaptive, spatial effects


also, all have large genetic & kinetic datasets. 
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Types of interaction models

Quantum Electrodynamics 
Quantum mechanics 
Molecular mechanics 
Master equations 

Phenomenological rates ODE

Flux Balance 
Thermodynamic models 
Steady State 
Metabolic Control Analysis 
Spatially inhomogenous models 

subatomic 
electron clouds 
spherical atoms           (101Pro1) 
stochastic single molecules (Net1) 

Concentration & time (C,t) 
dCik/dt optima steady state (Net1) 
dCik/dt = 0 k reversible reactions 
ΣdCik/dt = 0 (sum k reactions) 
d(dCik/dt)/dCj (i = chem.species) 
dCi/dx 

Increasing scope, decreasing resolution 4 



In vivo & (classical) in vitro

1) "Most measurements in enzyme kinetics are based on initial rate 
measurements, where only the substrate is present… enzymes in 
cells operate in the presence of their products" Fell p.54 (Pub) 
(http://www.amazon.com/exec/obidos/ASIN/185578047X/) 

2) Enzymes & substrates are closer to equimolar than in classical in 
vitro experiments. 

3) Proteins close to crystalline densities so some reactions occur 
faster while some normally spontaneous reactions become 
undetectably slow. 

e.g. Bouffard, et al., Dependence of lactose metabolism upon

mutarotase encoded in the gal operon in E.coli.

J Mol Biol. 1994; 244:269-78. (Pub)

(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=7966338&dopt=Abstract) 
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Human 
Red Blood Cell 
ODE model 
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Jamshidi et al.2000 
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(http://atlas.med.harvard.edu/gmc/rbc.html) 
6 



Factors Constraining Metabolic Function


• Physicochemical factors 
– Mass, energy, and redox balance: 

• Systemic stoichiometry 
– osmotic pressure, electroneutrality, solvent capacity, 

molecular diffusion, thermodynamics 
– Non-adjustable constraints 

• System specific factors 
– Capacity: 

• Maximum fluxes


– Rates: 

• Enzyme kinetics 

– Gene Regulation 
– Adjustable constraints
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Dynamic mass balances on each metabolite


Vsyn Vdeg 
Vtrans 

Vuse 

dX i = (Vsyn −Vdeg −V ) −V = ( v S j ) − b
dt use trans ij i 

Time derivatives of metabolite concentrations are linear 
combination of the reaction rates. 

The reaction rates are non-linear functions of the metabolite 
concentrations (typically from in vitro kinetics). 

1. vj is the jth reaction rate, b is the transport rate vector, 
Sij is the “Stoichiometric matrix” = moles of metabolite i 

produced in reaction j 
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RBC model integration


Reference Glyc- PPP  ANM Na+/K+ Osmot. Trans- Hb-5 Gpx Shape
olysis Pump port ligands Hb Ca 

Rapoport ’74-6 + - - - - - - - - -
Heinrich ’77 + - - - - - - - - -
Ataullakhanov’81 + + - - - - - - - -
Schauer ’81 + - + - - - - - - -
Brumen ’84 + - - + + - - - - 
Werner ’85 + - - + + + - - - -
Joshi ’90 + + + + + + - - - -
Yoshida ’90 - - - - - - + - - 
Lee ’92 + + + + + + (+) - - -
Gimsa ’98 - - - - - - - - - + 
Destro-Bisol ‘99 - - - - - - - (-)  - -
Jamshidi ’00 + + + + + + - - - -

(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=2107752&dopt=Abst

ract)

(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10697857&dopt=Abs

tract)

(http://atlas.med.harvard.edu/gmc/rbc.html)
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Scopes & Assumptions

•	 Mechanism of ATP utilization other than 

nucleotide metabolism and the Na+/K+ pump 
(75%) is not specifically defined 

• Ca2+ transport not included 
•	 Guanine nucleotide metabolism neglected 

–	 little information, minor importance 
-• Cl-, HCO3 , LAC, etc. are in “pseudo” equilibrium


•	 No intracellular concentration gradients 
•	 Rate constants represent a “typical cell” 
•	 Surface area of the membrane is constant 
•	 Environment is treated as a sink 
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Glycolysis Dynamic Mass Balances

d ( P G ) = vHK − vPGI − vG 6 PDHdt d (3PG) = vPGK − vPGM + vDPGasedtd (F 6P) = v − vPFK + vTA + v
dt PGI TKII d (2PG) = v − vENd (FDP) = v − vALD 

dt PGM 

dt PFK d (PEP) = v − vPKd (DHAP) = v − vTPI 
dt EN 

dt ALD d (PYR) = v − vPYRex 
− vLDHdt

3d ( P GA ) = vALD + vTPI − vGAPDH + vTKI + vTKII − vTA d (LAC ) = v

PK 

− vLACex 

dt 
d ( 3,1 DPG) = vGAPDH − vPGK − vDPGMdt 
d ( 3,2 DPG) = v − vDPGase 

dt 

dt LDH 

d (NADH ) = v − vLDHGAPDH 

dt DPGM 

dX i = (Vsyn −Vdeg −V ) −V = ( v S 11 
j ) − b

dt use trans ij i 



Enzyme Kinetic Expressions 

Phosphofructokinase 
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Kinetic Expressions


•	 All rate expressions are similar to the 
previously shown rate expression for 
phosphofructokinase. 

• Model has 44 rate expressions with ~ 5 

constants each Æ ~ 200 parameters


•	 What are the assumptions associated with 
using these expressions? 
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Kinetic parameter assumptions

•	 in vitro values represent the in vivo parameters 

–	 protein concentration in vitro much lower than in vivo 
•	 enzyme interactions (enzymes, cytoskeleton, membrane, …) 

–	 samples used to measure kinetics may contain unknown conc. of effectors (i.e. 
fructose 2,6-bisphosphate) 

–	 enzyme catalyzed enzyme modifications 

•	 all possible concentrations of interacting molecules been considered 
(interpolating) 
–	 e.g. glutamine synthase  (unusually large # of known effectors) 

•	 3 substrates, 3 products, 9 significant effectors 
• 415 (~109) measurements: 4 different conc. of 15 molecules (Savageau, 1976) 

–	 in vivo probably even more complex, but approximations are effective. 

•	 have all interacting molecules been discovered? 
•	 and so on … 
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Additional constraints:

Physicochemical constrains


Osmotic Pressure Equilibrium (interior & exterior, m chem. species) 

π i = π e


m m


RT ∑φ Cij =RT ∑φ Cejij ej

j =1 j =1


Electroneutrality (z = charge, Concentration)

m 

∑ C z ij = 0ij

j =1


m 

∑ C z ej = 0ej

j =1
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RBC steady-state in vivo vs calculated

|obs-calc| = Y 

sd(obs) 
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X= metabolites (ordered by Y) 16 



Phase plane diagrams: concentration of 

metabolite A vs B over a specific time course


1: conservation 
relationship. 

2: a pair of 
concentrations 
in equilibrium 

3: two 
dynamically 
independent 
metabolites 

4: a closed loop 
trace 
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1 hours
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Redox
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ATP load 
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Blue 1.0 

Yellow 10 

End 300 

Redox load 
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From A Computer Model of Human Red Blood Cell Metabolism, Jamshidi, Edwards & Church et al. 'Bioinformatics' vol. 17 2000, 

pp.286,7, 2 fig. Oxford University Press. 



Redox

Load


0 to 300 
hour 
dynamics 
34 
metabolites 
calculated 

ODE model

Jamshidi et al. 
2000 (Pub) 
(http://atlas.med.harvard.edu/ 19 
gmc/rbc.html) 



RBC Metabolic “Machinery”
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Hill coefficients


Response

R =  1 


1+(K/S)H


H simple hyperbolic = 1
H (R=HbO2, S=O2) sigmoidal = 2.8

H (R=Mapk-P, S=Mos) = 3
H (R=Mapk-P, S=Progesterone in vivo) = 42 . 

See Science 1998;280:895-8 Ferrell & Machleder, (Pub) 
(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9572732&dopt=Abstract) 
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“The biochemical basis of an all-or-none cell 

fate switch in Xenopus oocytes.”


Progesterone 

AA Mos Mos-P 

Mek Mek-P 

Mapk Mapk-P 

k1 k2 
k-1 k-2 

(a chain of enzyme modifiers close to saturation generate higher 
sensitivity to signals than one enzyme can) 

See Science 1998;280:895-8 Ferrell & Machleder, (Pub) 
(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9572732&dopt=Abstract) 
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Net1: Today's story & goals


• Macroscopic continuous concentration rates

– Cooperativity & Hill coefficients 
– Bistability 

• Mesoscopic discrete molecular numbers 
– Approximate & exact stochastic 

• Chromosome Copy Number Control 
• Flux balance optimization 

– Universal stoichiometric matrix 
– Genomic sequence comparisons 
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See Arkin A, Ross J, McAdams HH Genetics 1998 149(4):1633. 


Stochastic kinetic analysis of developmental pathway bifurcation in phage 
lambda-infected E. coli cells. 

Variation in level, time & whole cell effect
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Efficient exact stochastic simulation 
of chemical systems with many 
species & many channels 

"the Next Reaction Method, an exact algorithm ...time proportional 
to the logarithm of the number of reactions, not to the number of 
reactions itself". Gibson & Bruck, 1999; J. Physical Chemistry. 
(Pub) (http://paradise.caltech.edu/~gibson/papers/efficient.pdf) 

Gillespie J.Phys Chem 81:2340-61. 

1977. Exact stochastic simulation of 

coupled chemical reactions
 26 



Utilizing Noise


Hasty, et al. PNAS 2000; 97:2075-2080, Noise-based 
switches and amplifiers for gene expression (Pub) 
(http://www.pnas.org/cgi/content/full/97/5/2075) 

“Bistability ... arises naturally... Additive external noise [allows] construction of a 
protein switch... using short noise pulses. In the multiplicative case, ... small 
deviations in the transcription rate can lead to large fluctuations in the production 
of protein”. 

Paulsson, et al. PNAS 2000; 97:7148-53. Stochastic 
focusing: fluctuation-enhanced sensitivity of intracellular 
regulation. (Pub) (exact master equations) (http://www.pnas.org/cgi/content/full/97/13/7148) 
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Net1: Today's story & goals


• Macroscopic continuous concentration rates

– Cooperativity & Hill coefficients 
– Bistability 

• Mesoscopic discrete molecular numbers 
– Approximate & exact stochastic 

• Chromosome Copy Number Control 
• Flux balance optimization 

– Universal stoichiometric matrix 
– Genomic sequence comparisons 
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Copy Number Control Models


•	 Replication of ColE1 & R1 Plasmids


•	 Determine the factors that govern the plasmid 
copy number 
–	 cellular growth rate


– One way to address this question is via the use of a 
kinetic analysis of the replication process, and relate 
copy number to overall cellular growth. 

•	 Why? the copy number can be an important 
determinant of cloned protein production in 
recombinant microorganisms 
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RNA II 

RNA I 

DNA 
Polymerase 

ColE1 CNC mechanism 

Rnase H cleaved RNAII forms a 
primer for DNA replication RNase H
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RNA II 

RNA I 

RNA 
Polymerase 

Rom protein 

RNA I binding to RNA II prevents RNaseH from cleaving RNA II 



DNA
Polymerase 

RNA I 

Where do we start? 
RNA IIDynamic mass balance 

RNase H 

RNA
Polymerase

Rom RNA I 

What are the important parameters? 
Plasmid, RNA I, RNA II, Rom, µ 

RNA II All the constants

degradation, initiation, inhibition


Assumptions?

RNaseH rate is very fast Î instantaneous 
DNA polymerization is very rapid 
Simplify by subsuming [RNA II] Î model RNA I inhibition 
RNA I and RNA II transcription is independent (neglect convergent transcription) 
Rom protein effects constant 
Consider 2 species: RNA I and plasmid 
Many more assumptions... 31 



Dynamic Mass Balance: ColE1 RNAI

[concentration in moles/liter]


Rate of change Synthesis of Degradation Dilution due
= - of [RNA I] RNA I of RNA I to cell growth


R = [RNA I]

k1 = rate of RNA I initiation

N = [plasmid]

kd = rate of degradation

µ = growth rate


dR 
= N k − (k + µ )Rddt 1 

Keasling,& Palsson (1989) J theor Biol 136, 487-492; 141, 447-61.
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Dynamic Mass Balance: ColE1 Plasmid


Rate of change Plasmid Dilution due
= 
of [N] Replication to cell growth


R = [RNA I]

k2 = rate of RNA II initiation

N = [plasmid]

KI = RNA I/RNA II binding constant


(an inhibition constant) 
µ = growth rate 

dN 1 
= k2 ( )N − µ N

dt 1+ R K I 
Solve for N(t). 33 



Mathematica ODE 

Formulae for steady state program


start at mu=1 shift to mu=.5 

and then solve for plasmid 
concentration N as a 
function of time. 
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Stochastic models for CNC


Paulsson & Ehrenberg, J Mol Biol 1998;279:73-88. Trade-off 
between segregational stability and metabolic burden: a 
mathematical model of plasmid ColE1 replication control. (Pub), 
(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9636701&dopt=Abstract) 

J Mol Biol 2000;297:179-92. Molecular clocks reduce plasmid 
loss rates: the R1 case. (Pub) 
(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10704315&dopt=Abstract) 

While copy number control for ColE1 efficiently corrects for fluctuations that 
have already occurred, R1 copy number control prevents their emergence in 
cells that by chance start their cycle with only one plasmid copy. Regular, clock
like, behaviour of single plasmid copies becomes hidden in experiments probing 
collective properties of a population of plasmid copies ... The model is 
formulated using master equations, taking a stochastic approach to regulation” 
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From RBC & CNC to models for 

whole cell replication? 

e.g. E. coli ? 

What are the difficulties? 
• The number of parameters 
• Measuring the parameters 
• Are parameters measured in vitro 

representative to the parameters in vivo 

36 



Factors Constraining Metabolic Function


• Physicochemical factors: 
– Mass, energy, and redox balance: 

• Systemic stoichiometry 
– osmotic pressure, electroneutrality, solvent capacity, 

molecular diffusion, thermodynamics 
– Non-adjustable constraints 

• System specific factors: 
– Capacity: 

• Maximum fluxes 
– Rates:  

• Enzyme kinetics 
– Gene Regulation 
– Adjustable constraints 
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Net1: Today's story & goals


• Macroscopic continuous concentration rates

– Cooperativity & Hill coefficients 
– Bistability 

• Mesoscopic discrete molecular numbers 
– Approximate & exact stochastic 

• Chromosome Copy Number Control 
• Flux balance optimization 

– Universal stoichiometric matrix 
– Genomic sequence comparisons 

38 



Dynamic mass balances on each metabolite


Vsyn Vdeg 
Vtrans 

Vuse 

dX i = (Vsyn −Vdeg −V ) −V = ( v S j ) − b
dt use trans ij i 

Time derivatives of metabolite concentrations are linear 
combination of the reaction rates. The reaction rates are non
linear functions of the metabolite concentrations (typically 
from in vitro kinetics). 

Where vj is the jth reaction rate, b is the transport rate vector, 
Sij is the “Stoichiometric matrix” = moles of metabolite i 

produced in reaction j 
39




Flux-Balance Analysis


•	 Make simplifications based on the 
properties of the system. 
– Time constants for metabolic reactions are very 

fast (sec - min) compared to cell growth and 
culture fermentations (hrs) 

– There is not a net accumulation of metabolites 
in the cell over time. 

•	 One may thus consider the steady-state 
approximation. 

dX 
= S ⋅ v − b = 0

dt 
40 



Flux-Balance Analysis

S ⋅ v = b 

•	 Removes the metabolite concentrations as a variable in the 
equation. 

•	 Time is also not present in the equation. 
•	 We are left with a simple matrix equation that contains: 

–	 Stoichiometry: known 
–	 Uptake rates, secretion rates, and requirements: known 
–	 Metabolic fluxes: Can be solved for! 

In the ODE cases before we already had fluxes (rate 
equations, but lacked C(t). 
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Additional Constraints


– Fluxes >= 0  (reversible = forward - reverse) 
– The flux level through certain reactions is known


– Specific measurement – typically for uptake rxns


– maximal values 
– uptake limitations due to diffusion constraints 
– maximal internal flux 

α i ≤ vi ≤ β i 
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Flux Balance Example

Flux Balances: 

A 
2C 

B 

RC 

RB 

RA 

x1 

x2 

A: RA – x1 – x2 = 0 
B: x1 – RB = 0 
C: 2 x2 – RC = 0 

Constraints: 
RA = 3 
RB = 1 

Equations:
1 

CRxx 21 

A 1 3

 

 
x 1A: x1+x2 = 3 
B: x1 = 1 B 



1 RC











=
 




x 2
C: 2 x2 – RC = 0 C 2 −
 0
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S ⋅
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b
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FBA Example
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FBA

•	 Often, enough measurements of the 

metabolic fluxes cannot be made so that the 
remaining metabolic fluxes can be 
calculated. 

•	 Now we have an underdetermined system

– more fluxes to determine than mass balance 

constraints on the system 
– what can we do?
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Incomplete Set of Metabolic Constraints


•	 Identify a specific point within the feasible set under any 
given condition 

•	 Linear programming - Determine the optimal utilization 
of the metabolic network, subject to the physicochemical 
constraints, to maximize the growth of the cell 

Fl
ux

A 

FluxB 

Fl
ux

C Assumption:

The cell has found the optimal 
solution by adjusting the system 
specific constraints (enzyme kinetics 
and gene regulation) through 
evolution and natural selection. 

Find the optimal solution by linear 
programming 

46 



Under-Determined System

•	 All real metabolic systems fall into this category, so far. 
•	 Systems are moved into the other categories by measurement of fluxes 

and additional assumptions. 
•	 Infinite feasible flux distributions, however, they fall into a solution 

space defined by the convex polyhedral cone. 
•	 The actual flux distribution is determined by the cell's regulatory 

mechanisms. 
•	 It absence of kinetic information, we can estimate the metabolic flux 

distribution by postulating objective functions(Z) that underlie the 
cell’s behavior. 

•	 Within this framework, one can address questions related to the 
capabilities of metabolic networks to perform functions while 
constrained by stoichiometry, limited thermodynamic information 
(reversibility), and physicochemical constraints (ie. uptake rates) 
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FBA - Linear Program

S ⋅ v = b


•	 For growth, define a growth flux where a linear 
combination of monomer (M) fluxes reflects the known 
ratios (d) of the monomers in the final cell polymers. 

vgrowth∑ dM ⋅ M  → biomass
 
allM •	 A linear programming problem is formulated where one 

finds a solution to the above equations, while minimizing 
an objective function (Z). Typically Z= ν growth

(or production of a key compound).


•	 Constraints to the LP problem:

•	 i reactions S ⋅ v = b 

vi ≥ 0 
α i	 ≤ vi ≤ β i 
vi	 = X i 

48 



Very simple LP solution
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A B
RA 

x1 

x2 

RB 

D 

CFlux Balance 
Constraints: 

RA = RB 
RA < 1 
x1 + x2 < 1 
x1 >0 
x2 > 0 Feasible flux 

distributions 

x1 

x2 
Max Z = Max RD 
Production 

Max Z = RC 
Production 

RC 

RD 



Applicability of LP & FBA


•	 Stoichiometry is well-known 
•	 Limited thermodynamic information is required


–	 reversibility vs. irreversibility 
•	 Experimental knowledge can be incorporated in to the 

problem formulation 
•	 Linear optimization allows the identification of the 

reaction pathways used to fulfil the goals of the cell if it is 
operating in an optimal manner. 

•	 The relative value of the metabolites can be determined

•	 Flux distribution for the production of a commercial 

metabolite can be identified. Genetic Engineering 
candidates 
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Precursors to cell growth


• How to define the growth function.

– The biomass composition has been determined 

for several cells, E. coli and B. subtilis. 
• This can be included in a complete metabolic 

network 

– When only the catabolic network is modeled, 
the biomass composition can be described as 
the 12 biosynthetic precursors and the energy 
and redox cofactors 
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in silico cells

E. coli H. influenzae H. pylori 

Genes 695 362 268 
Reactions 720 488 444 
Metabolites 436 343 340 

(of total genes 4300 1700 1800)


Edwards, et al 2002. Genome-scale metabolic model of Helicobacter 
pylori 26695. J Bacteriol. 184(16):4582-93. 

Segre, et al, 2002 Analysis of optimality in natural and perturbed 
metabolic networks. PNAS 99: 15112-7. (Minimization Of Metabolic 

52Adjustment ) http://arep.med.harvard.edu/moma/ 



EMP RBC, E.coli 
KEGG, Ecocyc 

oli_Dem/) 

parameters) 
come from? 

(http://www.empproject.com/cgi-
bin/rd_html.pl?id=SEL87070-13) 

(http://www.empproject.com/map_tre 
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Where do the 
Stochiometric 

matrices (& 
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Biomass Composition
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Flux ratios at 
each branch 
point yields 
optimal 
polymer 
composition 
for replication 

x,y are two of the 100s 

of flux dimensions
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Flux Data
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Flux data (MPA & FBA) 

Condition Method p-val (a) p-val (b) p-val (c) p-val (d)ρ1 ρ2 

wt 0.91 8.2E-08 
ko (FBA) -0.064
 6.0E-01 -0.36 9.0E-01 3.3E-03 2.4E-04 
ko MoMA 0.56 7.4E-03 0.48 2.3E-02 
wt 0.97 8.1E-12 
ko (FBA) 0.77 8.1E-05 0.36 7.0E-02 2.5E-03 1.4E-02 
ko MoMA 0.94 2.6E-09 0.74 2.3E-04 
wt 0.78 7.1E-05 
ko (FBA) 0.86 3.0E-06 0.096 3.5E-01 9.0E-02 4.6E-02 
ko MoMA 0.73 2.8E-04 0.49 2.0E-02 
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Replication rate of a whole-genome set of 

mutants


60Badarinarayana, et al. (2001) Nature Biotech.19: 1060




Reproducible selection?


Correlation between two selection experiments 

Badarinarayana, et al. (2001) Nature Biotech.19: 1060

61 



62

Essential 142 80 62
Reduced growth 46 24 22
Non essential 299 119 180 p = 4·10-3

Essential 162 96 66
Reduced growth 44 19 25
Non essential 281 108 173 p = 10-5

MOMA

FBA

Competitive growth data

Χ 2  p-values

4x10-3

1x10-5

Position effects Novel redundancies

Negative
selection

no
selection



Replication rate challenge met: multiple 

homologous domains


1 2 3

thrA 

1 2

1.1	 6.7 lysC


1 2 3 10.4


metL 
1.8 1.8 Selective disadvantage in 

minimal media 

probes
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Net1: Today's story & goals


• Macroscopic continuous concentration rates

– Cooperativity & Hill coefficients 
– Bistability 

• Mesoscopic discrete molecular numbers 
– Approximate & exact stochastic 

• Chromosome Copy Number Control 
• Flux balance optimization 

– Universal stoichiometric matrix 
– Genomic sequence comparisons 
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