Protein1: Last week's take home lessons

- Protein interaction codes(s)?
- Real world programming
- Pharmacogenomics : SNPs
- Chemical diversity: Nature/Chem/Design
- Target proteins : structural genomics
- Folding, molecular mechanics & docking
- Toxicity animal/clinical: cross-talk

Protein2: Today's story & goals

- Separation of proteins & peptides
- Protein localization & complexes
- Peptide identification (MS/MS)
 - Database searching & sequencing.
- Protein quantitation
 - Absolute & relative
- Protein modifications & crosslinking
- Protein metabolite quantitation

Why purify?

- Reduce one source of noise (in identification/quantitation)
- Prepare materials for in vitro experiments (sufficient causes)
- Discover biochemical properties

(Protein) Purification Methods

- Charge: ion-exchange chromatography, isoelectric focusing
- <u>Size</u>: dialysis, gel-filtration chromatography, gel-electrophoresis, sedimentation velocity
- Solubility: salting out
- <u>Hydrophobicity</u>: Reverse phase chromatography
- Specific binding: affinity chromatography
- <u>Complexes:</u> Immune precipitation (± crosslinking)
- <u>Density</u>: sedimentation equilibrium

Protein Separation by Gel Electrophoresis

- Separated by *mass*: Sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis.
 - Sensitivity: 0.02ug protein with a silver stain.
 - Resolution: 2% mass difference.

- Separated by *isoelectric point (pI)*: polyampholytes pH gradient gel.
 - Resolution: 0.01 pI.

Comparison of predicted with observed protein properties (localization, postsynthetic modifications) E.coli

See Link et al. 1997 Electrophoresis 18:1259-313 (Pub)

(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9298646&dopt=Abstract)

Computationally checking proteomic data

Property

Basis of calculation

Protein charge RKHYCDE (N,C), pKa, pH (Pub)

(http://gcg.nhri.org.tw/isoelectric.html#algorithm)

Protein mass Calibrate with knowns (complexes)

Peptide LC aa composition linear regression

Subcellular Hydrophobicity, motifs (Pub)

Expression Codon Adaptation Index (CAI)

Protein2: Today's story & goals

- Separation of proteins & peptides
- Protein localization & complexes
- Peptide identification (MS/MS)
 - Database searching & sequencing.
- Protein quantitation
 - Absolute & relative
- Protein modifications & crosslinking
- Protein metabolite quantitation

Cell fraction: Periplasm 2D gel: SDS mobility isoelectic pH

See Link et al. 1997 Electrophoresis 18:1259-313

(Pub)

(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9298646&dopt=Abstract)

Cell localization predictions

<u>TargetP</u>: using N-terminal sequence discriminates mitochondrion, chloroplast, secretion, & "other" localizations with a success rate of 85%. (pub) (http://www.cbs.dtu.dk/services/TargetP/),

 $(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve\&db=PubMed\&list_uids=10891285\&dopt=Abstract)$

Gromiha 1999, Protein Eng 12:557-61. A simple method for predicting transmembrane alpha helices with better accuracy. (pub) (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10436081&dopt=Abstract)

Using the information from the topology of 70 membrane proteins... correctly identifies 295 transmembrane helical segments in 70 membrane proteins with only two overpredictions.

Isotope calculations

Mass resolution 0.1% vs. 1 ppm

Symbol	Mass	Abund.	Symbol	Mass	Abund.
H(1)	1.007825	99.99	H(2)	2.014102	0.015
C(12)	12.000000	98.90	C(13)	13.003355	1.10
N(14)	14.003074	99.63	N(15)	15.000109	0.37
0(16)	15.994915	99.76	0(17)	16.999131	0.038
S(32)	31.972072	95.02	S(33)	32.971459	0.75

Computationally checking proteomic data

Property

Basis of calculation

Protein charge RKHYCDE (N,C), pKa, pH (Pub)
(http://gcg.nhri.org.tw/isoelectric.html#algorithm)

Protein mass Calibrate with knowns (complexes)

Peptide LC aa composition linear regression

Subcellular Hydrophobicity, motifs (Pub)

Expression Codon Adaptation Index (CAI)

High
Performance
Liquid
Chromatography

Mobile Phase of HPLC

- The interaction between the mobile phase and sample determine the migration speed.
 - Isocratic elution: constant migration speed in the column.
 - Gradient elution: gradient migration speed in the column.

Stationary Phase of HPLC

- The degree of interaction with samples determines the migration speed.
 - Liquid-Solid: polarity.
 - Liquid-Liquid: polarity.
 - Size-Exclusion: porous beads.
 - Normal Phase: hydrophilicity and lipophilicity.
 - Reverse Phase: hydrophilicity and lipophilicity.
 - Ion Exchange.
 - Affinity: specific affinity.

See

Sereda, T. et al. "Effect of the α -amino group on peptide retention behaviour in reversed-phase chromatography.

Wilce, et al. "High-performance liquid chromatography of amino acids, peptides and proteins." *Journal of Chromatography*, 632 (1993) 11-18.

A Map is Like a 2D Peptide Gel

What Information Can Be Extracted From A Single Peptide Peak

Directed Analysis of Large Protein Complexes by 2D separation: strong cation exchange and reversed-phased liquid chromatography.

Link, et al. 1999, **Nature Biotech.** 17:676-82. (Pub)

(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10404161&dopt=Abstract)

A new 40S subunit protein

See Link AJ, et al., Nat Biotechnol. 1999 Jul;17(7):676-82. Direct analysis of protein complexes using mass spectrometry.

Protein2: Today's story & goals

- Separation of proteins & peptides
- Protein localization & complexes
- Peptide identification (MS/MS)
 - Database searching & sequencing.
- Protein quantitation
 - Absolute & relative
- Protein modifications & crosslinking
- Protein metabolite quantitation

Tandem Mass Spectrometry

See Siuzdak, Gary. "The emergence of mass spectrometry in biochemical research." *Proc. Natl. Acad. Sci.* 1994, *91*, 11290-11297.

Roepstorff, P.; Fohlman, J. Biomed. Mass Spectrom. 1994, 11, 601.

Quadrople Q1 scans or selects m/z.

Q2 transmits those ions through collision gas (Ar).

Q3 Analyzes the resulting fragment ions.

Ions

Peptide Fragmentation and Ionization

Tandem Mass Spectra Analysis

See Gygi et al. Mol. Cell Bio. (1999)

Mass Spectrum Interpretation Challenge

- It is unknown whether an ion is a b-ion or an y-ion or else.
- Some ions are missing.
- Each ion has multiple of isotopic forms.
- Other ions (a or z) may appear.
- Some ions may lose a water or an ammonia.
- Noise.
- Amino acid modifications.

A dynamic programming approach to de novo peptide sequencing via tandem mass spectrometry

See Chen et al 2000. 11th Annual ACM-SIAM Symp. of Discrete Algorithms pp. 389-398.

SEQUEST: Sequence-Spectrum Correlation

Given a raw tandem mass spectrum and a protein sequence database.

- For every protein in the database,
- For every subsequence of this protein
 - Construct a hypothetical tandem mass spectrum
 - Overlap two spectra and compute the correlation coefficient (CC).
- Report the proteins in the order of CC score.

Protein2: Today's story & goals

- Separation of proteins & peptides
- Protein localization & complexes
- Peptide identification (MS/MS)
 - Database searching & sequencing.
- Protein quantitation
 - Absolute & relative
- Protein modifications & crosslinking
- Protein metabolite quantitation

Expression quantitation methods

RNA Protein

Genes immobilized labeled RNA

RNAs immobilized labeled genes-

Northern gel blot

QRT-PCR

Reporter constructs

Fluorescent In Situ (Hybridization)

Tag counting (SAGE)

Differential display

Antibody arrays

Westerns

-none-

same

same (Antibodies)

-none-

mass spec

Molecules per cell

E.coli/yeast

Human

Individual mRNAs:

 10^{-1} to 10^3

 10^{-4} to 10^5

Proteins:

 $10 \text{ to } 10^6$

 10^{-1} to 10^8

MS Protein quantitation R=.84

Yeast Protein ESI-MS Quantitation

MS quantitation reproducibility

Sample: Angiotensin, Neurotensin, Bradykinin

Map: 600 - 700 m/z

Coefficients of Variance

$$CV = \sigma/\mu$$

Correlation between protein and mRNA abundance in yeast

See Gygi et al. 1999, **Mol. Cell Biol.** 19:1720-30 (Pub)

(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10022859&dopt=Abstract)

Normality tests

See Weiss 5th ed. Page 920.

Types of non-normality: kurtosis, skewness (www)

(log) transformations to normal.

(http://www.marketminer.com/prophet/statguide/n-dist exam res.html)

Futcher et al 1999, A sampling of the yeast proteome. **Mol.Cell.Biol.** 19:7357-7368. (Pub) (http://mcb.asm.org/cgi/content/full/19/11/7357?view=full&pmid=10523624)

Spearman correlation rank test

$$r_s = 1 - \{6S/(n^3-n)\}$$

Rank (from 1 to n, where n is the number of pairs of data) the numbers in each column. If there are ties within a column, then assign all the measurements that tie the same median rank. Note, avoids ties (which reduce the power of the test) by measuring with as fine a scale as possible. S= sum of the square

differences in rank. (ref) (http://www.wisc.edu/ecology/labs/phenology/spearman.html)

Correlation of (phosphorimager ³⁵S met) protein & mRNA

 $r_p = 0.76$ for log(adjusted RNA) to log(protein)

 r_s = .74 overall; 0.62 for the top 33 proteins & 0.56 (not significantly different) for the bottom 33 proteins

Observed (Phosphorimage) protein levels vs. Codon Adaptation Index (CAI)

Codon Adaptation Index (CAI) Sharp and Li (1987); fi is the relative frequency of codon i in the coding sequence, and Wi the ratio of the frequency of codon i to the frequency of the major codon for the same amino-acid.

$$ln(CAI) = \sum_{i=1,61} fi ln (Wi)$$

ICAT Strategy for Quantifying Differential Protein Expression.

See Gygi et al. Nature Biotechnology (1999)

Mass Spectrum and Reconstructed Ion Chromatograms.

See Gygi et al. Nature Biotechnology (1999)

Protein & mRNA Ratios +/- Galactose

See Ideker et al 2001

(http://arep.med.harvard.edu/pdf/Ideker01.pdf)

Protein2: Today's story & goals

- Separation of proteins & peptides
- Protein localization & complexes
- Peptide identification (MS/MS)
 - Database searching & sequencing.
- Protein quantitation
 - Absolute & relative
- Protein modifications & crosslinking
- Protein metabolite quantitation

Post-synthetic modifications

- Radioisotopic labeling: PO₄ S,T,Y,H
- Affinity selection:

Cys: ICAT biotin-avidin selection

PO₄: immobilized metal Ga(III) affinity chromatography(IMAC)

(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10424175&dopt=Abstract)

Specific PO₄ Antibodies

Lectins for carbohydrates

Mass spectrometry

32P labeled phoshoproteomics

Low abundance cell cycle proteins not detected above background from abundant proteins

See Futcher et al 1999, A sampling of the yeast proteome.

Mol.Cell.Biol. 19:7357-7368. (Pub)

(http://mcb.asm.org/cgi/content/full/19/11/7357?view=full&pmid=10523624)

Natural crosslinks

Disulfides Cys-Cys

Collagen Lys-Lys

Ubiquitin C-term-Lys

Fibrin Gln-Lys

Glycation Glucose-Lys

Adeno primer proteins dCMP-Ser

Crosslinked peptide Matrix-assisted laser desorption ionization Post-Source Decay (MALDI-PSD-MS)

tryptic digest of BS3 cross-linked FGF-2. Cross-linked peptides are identified by using the program ASAP and are denoted with an asterisk (9). (B) MALDI-PSD spectrum of cross-linked peptide E45-R60 (M + H+ = m/z 2059.08).

Constraints

for homology modeling based on MS crosslinking distances

The 15 nonlocal throughspace distance constraints generated by the chemical cross-links (yellow dashed lines) superimposed on the average NMR structure of FGF-2 (1BLA). The 14 lysines of FGF-2 are shown in red.

See Young et al 2000, PNAS 97: 5802 (Pub) (http://www.pnas.org/cgi/content/full/97/11/5802)

Homology modeling accuracy

Swiss-model RMSD of the test set in Angstroms

Top 20 threading models for FGF ranked by crosslinking constraint error

See Young et al. PNAS | May 23, 2000 | vol. 97 | no. 11 | 5802-5806 http://www.pnas.org/cgi/content/full/97/11/5802

Protein2: Today's story & goals

- Separation of proteins & peptides
- Protein localization & complexes
- Peptide identification (MS/MS)
 - Database searching & sequencing.
- Protein quantitation
 - Absolute & relative
- Protein modifications & crosslinking
- Protein metabolite quantitation

Challenges for accurately measuring metabolites

- Rapid kinetics
- Rapid changes during isolation
- Idiosyncratic detection methods: enzyme-linked, GC, LC, NMR (albeit fewer molecular types than RNA& protein)

Karp et al. (1998) *NAR* 26:50. EcoCyc; Selkov, et al. (1997) *NAR* 25:37. WIT Ogata et al. (1998) Biosystems 47:119-128 KEGG

Metabolite fragmentation & stable isotope labeling

See Wunschel J Chromatogr A 1997, 776:205-19 Quantitative analysis of neutral & acidic sugars in whole bacterial cell hydrolysates using high-performance anion-exchange LC-ESI-MS2. (Pub)

(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9291597&dopt=Abstract)

Isotopomers

See Klapa et al. Biotechnol Bioeng 1999; 62:375. Metabolite and isotopomer balancing in the analysis of metabolic cycles: I. Theory. (Pub) "accounting for the contribution of all pathways to label distribution is required, especially ... multiple turns of metabolic cycles... 13C (or 14C) labeled substrates."

(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10099550&dopt=Abstract)

MetaFoR: Metabolic Flux Ratios

Fractional 13C labeling > Quantitative 2D NMR Why use amino acids from proteins rather than metabolites directly?

See:

Sauer J et al. Bacteriol 1999;181:6679-88 (Pub) (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10542169&dopt=Abstract)

Szyperski et al 1999 Metab. Eng. 1:189. (http://www.biotech.biol.ethz.ch/sauer/pdf/1999 - Uwe Sauer Metabol Eng.pdf)

Dauner et al. 2001 <u>Biotec Bioeng 76:144</u> (http\www.biotech.biol.ethz.ch\sauer\pdf\2001 - Michael Dauner et al B&B.pdf)

A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations

See Raamsdonk et al. 2001 Nature Biotech 19:45.

(http://arep.med.harvard.edu/pdf/Raamsdonk01.pdf)

Types of interaction models

Quantum Electrodynamics
Quantum mechanics
Molecular mechanics
Master equations

Phenomenological rates ODE

Flux Balance
Thermodynamic models
Steady State
Metabolic Control Analysis
Spatially inhomogenous models

subatomic
electron clouds
spherical atoms (101Pro1)
stochastic single molecules (Net1)

Concentration & time (C,t)

 dC_{ik}/dt optima steady state (Net1) $dC_{ik}/dt = 0$ k reversible reactions $\Sigma dC_{ik}/dt = 0$ (sum k reactions) $d(dC_{ik}/dt)/dC_{j}$ (i = chem.species) dC_{ik}/dt

How do enzymes & substrates formally differ?

Catalysts increase the rate (&specificity) without being consumed.

Enzyme rate equations with one Substrate & one Product

$$dP/dt = \frac{V (S/Ks - P/Kp)}{1 + S/Ks + P/Kp}$$

As P approaches 0:

$$dP/dt = \frac{V}{1 + Ks/S}$$

Enzyme Kinetic Expressions

Phosphofructokinase

$$v_{PFK} = \frac{v_{mx}^{PFK}}{N_{PFK}} \left(\frac{F6P}{K_{F6P}^{PFK}} \frac{K_{F6P}^{PFK}}{1 + F6P} \frac{Mg \bullet ATP}{1 + Mg \bullet ATP} \frac{K_{Mg \bullet ATP}^{PFK}}{1 + Mg \bullet ATP} \right)$$

$$N_{PFK} = 1 + L_{0}^{PFK} \frac{\left(1 + \frac{ATP_{free}}{K_{ATP}^{PFK}}\right)^{4} \left(1 + \frac{Mg}{K_{Mg}^{PFK}}\right)^{4}}{\left(1 + \frac{AMP}{K_{AMP}^{PFK}}\right)^{4} \left(1 + \frac{F6P}{K_{F6P}^{PFK}}\right)^{4}}$$

Allosteric kinetic parameters for AMP, etc.

Red Blood Cell in Mathematica

```
3.3
In[4]:= PFK
                                                                   5. GLC
Out[4]= (251.732 F6P MGATP) /
                                                                      1.3 HK
                                                                                          0.000
      ((0.1 + F6P) (1. + (0.001072 (1. + 2.27273 MG)^4))
                (1. + 101.919 (ATP - MGATP))^4) /
                                                                  0.066 G6P
                                                                                          0.001
             ((1.+30.303 \text{ AMP})^4 (1.+10. \text{ F6P})^4))
         (0.068 + MGATP))
                                                                       . PGI
                                                                  0.027 F6P
                                                                      1.2 PFK
                                                                                   0.1 TALD
                                                                  0.014 FDP
                                             0.15 DHAP
   ODE model
                                                                       .2 ALD
```

2000 (Pub)
(http://atlas.med.harvard.edu/gmc/rbc.html)

Jamshidi et al.

0.0067 GAP

Protein2: Today's story & goals

- Separation of proteins & peptides
- Protein localization & complexes
- Peptide identification (MS/MS)
 - Database searching & sequencing.
- Protein quantitation
 - Absolute & relative
- Protein modifications & crosslinking
- Protein metabolite quantitation