Intro 1: Last week's take home lessons

Life & computers : Self-assembly Math: be wary of approximations

Catalysis & Replication Differential equations: dy/dt=ky(1-y)

Mutation & the single molecule: Noise is overcome Directed graphs & pedigrees Bell curve statistics: Binomial, Poisson, Normal Selection & optimality

Intro 2: Today's story, logic & goals Biological side of Computational Biology

•Elements & Purification Systems Biology & Applications of Models Life Components & Interconnections Continuity of Life & Central Dogma Qualitative Models & Evidence Functional Genomics & Quantitative models Mutations & Selection

Elements For most NA & protein backbones: C,H,N,O,P,S

6+13 Useful for many species:

Na, K, Fe, Cl, Ca, Mg, Mo, Mn, Se, Cu, Ni, Co, Si

Group	1	2		3	4	5	6	7	8	9	10	11	12	13	- 14	15	16	17	18
Period																			
1 (1 H														\frown	\frown	\frown		2 He
2	3 Li	4 Be												5 B	6 C	$\begin{pmatrix} 7\\ N \end{pmatrix}$	$\begin{pmatrix} 8 \\ 0 \end{pmatrix}$	9 F	10 Ne
3	11 Na	12 Mg												13 Al	14 Si	(15 P	$\binom{16}{S}$	17 Cl	18 Ar
4	19 K	20 Ca		21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr		39 	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
6	55 Cs	56 Ba	*	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 r	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	**	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Uun	111 Uuu	112 Uub	113 Uut	114 Uuq	115 Uup	116 Uuh	117 Uus	118 Uuo
*Lanthanoids			*	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb		
**Actinoids			**	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No		

From atoms to (bio)molecules

 H^+ , $OH^ H_2O$ H_2, O_2 C_{60} CH_4 CO_3^{-} $NO_3^ N_2$ NH₃ SO_4 - Mg^{++} $\mathbf{S}_{\mathbf{n}}$ H_2S $K^+PO_4^- Na^+$ PH₃ Gas Elemental Salt

Purify

Elements, molecules, assemblies, organelles, cells, organisms

chromatography

Purified history

Pre 1970s: Column/gel purification revolution

Mid-1970s: Recombinant DNA brings clonal (single-step) purity.

1984-2002: Sequencing genomes & automation aids return to whole systems.

Intro 2: Today's story, logic & goals Biological side of Computational Biology

Elements & Purification

•Systems Biology & Applications of Models Life Components & Interconnections Continuity of Life & Central Dogma Qualitative Models & Evidence Functional Genomics & Quantitative models Mutations & Selection

"A New Approach To Decoding Life: Systems Biology" Ideker et al 2001

(http://arep.med.harvard.edu/pdf/Ideker01b.pdf)

- **1. Define all components of the system.**
- 2. Systematically perturb and monitor components of the system (genetically or environmentally).
- **3. Refine the model such that its predictions most closely agree with observations.**
- 4. New perturbation experiments to distinguish among model hypotheses. ⁸

Systems biology critique

An old approach. New spins: 1. *"all* components" 2. *"Systematically* perturb"

Unstated opportunities?

- 3. Refine the model without overfitting. Methods to recapture unautomated data. Explicit(automatic?) logical connections.
- 4. Optimization of new perturbation experiments & technologies.

Automation, *ultimate applications*, & synthetics as standards for: search, merge, check

Transistors > inverters > registers > binary adders > compilers > application programs

Spice simulation of a CMOS inverter(figures) (http://et.nmsu.edu/~etti/spring97/electronics/cmos/cmostran.html)

Why?

#0. Why sequence the genome(s)? To allow #1,2,3 below.

#1. Why map variation?

#2. Why obtain a complete set of human RNAs, proteins& regulatory elements?

#3. Why understand comparative genomics and how genomes evolved? To allow #4 below.

#4. Why quantitative biosystem models of molecular interactions with multiple levels (atoms to cells to organisms & populations)?

To share information. Construction is a test of understanding & to make **useful products**. 11

Grand (& useful) Challenges

A) From atoms to evolving minigenome-cells.

- Improve *in vitro* macromolecular synthesis.
- Conceptually link atomic (mutational) changes to population evolution (via molecular & systems modeling).
- Novel polymers for smart-materials, mirror-enzymes & drug selection.

B) From cells to tissues.

- Model combinations of external signals & genome-programming on expression.
- Manipulate stem-cell fate & stability.
- Engineer reduction of mutation & cancerous proliferation.
- Programmed cells to replace or augment (low toxicity) drugs.

C) From tissues to systems

- Programming of cell and tissue morphology.
- Quantitate robustness & evolvability.
- Engineer sensor-effector feedback networks where macro-morphologies determine the functions; past (Darwinian) or future (prosthetic).

Intro 2: Today's story, logic & goals Biological side of Computational Biology

Elements & Purification Systems Biology & Applications of Models •Life Components & Interconnections Continuity of Life & Central Dogma Qualitative Models & Evidence Functional Genomics & Quantitative models Mutations & Selection Number of component types (guesses)

Mycoplasma Worm Human .58M >97M **3000M** Bases (http://www.nature.com/cgi-taf/DynaPage.taf?file=/nature/journal/v409/n6822/full/409860a0 fs.html) DNAs 25 >19k Genes .48k 34k-150k (http://www.ensembl.org/Genesweep/) **RNAs** >30k .2-3M .4k >50k .3-10M **Proteins** .6k **10**¹⁴ 959 Cells

From monomers to polymers

Complementary surfaces Watson-Crick base pair (Nature April 25, 1953)

(http://www.sil.si.edu/Exhibitions/Science-and-the-Artists-Book/bioc.htm#27)

dATP

rATP

The simplest amino acid component of proteins

Glycine Gly G


```
config(glycine,[

substituent(aminoacid_L_backbone),

substituent(hyd),

linkage(from(aminoacid_L_backbone,car(1)),

to(hyd,hyd(1)),

nil,single)]).

<u>Klotho</u> (http://www.ibc.wustl.edu/klotho)
```

Smiles String: [CH2]([NH3+])[C](=[O])[O-]

20 Amino acids of 280

18

www.people.virginia.edu/~rjh9u/aminacid.html www-nbrf.georgetown.edu/pirwww/search/textresid.html

Intro 2: Today's story, logic & goals Biological side of Computational Biology

Elements & Purification Systems Biology & Applications of Models Life Components & Interconnections •Continuity of Life & Central Dogma Qualitative Models & Evidence Functional Genomics & Quantitative models Mutations & Selection

Continuity of Life & Central Dogma

Self-assembly, Catalysis, Replication, Mutation, Selection Regulatory & Metabolic Networks

Polymers: Initiate, Elongate, Terminate, Fold, Modify, Localize, Degrade

"The" Genetic Code

Adjacent mRNA codons

Translation t-,m-,r-RNA

Large macromolecular complexes: Ribosome: 3 RNAs (over 3 kbp plus over 50 different proteins)

Science (2000) 289: 878, <u>905, 920, <u>3D coordinates.</u> The ribosome is a ribozyme.</u>

(http://www.sciencemag.org/cgi/content/full/289/5481/905),

(http://www.rcsb.org/pdb/cgi/explore.cgi?pid=8478969223009&pdbId=1FFK)

Perl Dogma

(EditPlus) (http://www.editplus.com/)

```
4 #### The Central Dogma ####
 5 -
   *****
 6.
 7 -
   ### Genome
 8
   $DNA seq = "ATGACCCTACTAGATCATCTATGATAGCTCAT";
 9
10 ### Transcription
11 $RNA seg = $DNA seg;
12
   $RNA seg =~ s/T/U/gi;
13 print "$RNA seg\n";
14
15 ### Translation
16
   $position = 0;
   while (substr $RNA seq, $position, 3) {
17
         $codon = substr $RNA seq,$position,3;
18
19^{-1}
         print translate codon($codon);
20
         $position = $position + 3;
21
   }
22 sub translate_codon {
23
         if ($ [0] =~ /GC./i) {return Ala;}
24
         if ($ [0] =~ /UGC/UGU/i) {return Cys;}
```

Continuity & Diversity of life

Genomes 0.5 to 7 Mbp

10 Mbp to 1000 Gbp

Figure (http://216.190.101.28/GOLD/)

How many living species?

5000 bacterial species per gram of soil (<70% DNA bp identity) Millions of non-microbial species (& dropping)

- Whole genomes: 45 done since 1995, 322 in the pipeline!(ref) (http://216.190.101.28/GOLD/).
- Sequence bits: 16234 (in 1995) to **79961** species (in 2000) <u>NCBI</u>
- & Why study more than one species?
- Comparisons allow discrimination of subtle functional constraints.

Genetic codes (ncbi)

(http://www.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wprintgc?mode=c)

1. "Standard C	ode"
Base1 = TTTTT	TTTTTTTTTTTCCCCCCCCCCCCAAAAAAAAAAAAAAAGGGGGGGG
Base2 = TTTTC	CCCAAAAGGGGTTTTCCCCCAAAAGGGGTTTTCCCCCAAAAGGGGTTTTCCCCCAAAAGGGG
Base3 = TCAGT	CAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGT
AAs = FFLLS	SSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG
Starts =M-	MMMMM
2. The Vertebr	ate Mitochondrial Code
AAs = FFLLS	SSSYY**CCWWLLLLPPPPHHQQRRRRIIMMTTTTNNKKSS**VVVVAAAADDEEGGGG
Starts =	MMMMMMMM
3. The Yeast M	itochondrial Code
AAs = FFLLS	SSSYY**CCWWTTTTPPPPHHQQRRRRIIMMTTTTNNKKSSRRVVVVAAAADDEEGGGG
Starts =	MMMM
11. The Bacter	ial "Code"
AAs = FFLLS	SSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG
Starts =M-	MIMMMMIMMMMIMMMM
14. The Flatwo	rm Mitochondrial Code
AAs = FFLLS	SSSYYY*CCWWLLLLPPPPHHQQRRRRIIIMTTTTNNNKSSSSVVVVAAAAADDEEGGGG
Starts =	MM
22. Scenedesmu	s obliquus mitochondrial Code
AAs = FFLLS	S*SYY*LCC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG
Starts =	MMM

Translational reprogramming

Gesteland, R. F. and J. F. Atkins. 1996. Recoding - Dynamic reprogramming of translation (1996). Ann. Rev.Biochem 65:741-768

Herbst KL, et al. 1994 PNAS 91:12525-9 A mutation in ribosomal protein L9 affects ribosomal hopping during translation of gene 60 from bacteriophage T4. "**Ribosomes hop over a 50-nt** coding gap during translation..."

Intro 2: Today's story, logic & goals Biological side of Computational Biology

Elements & Purification Systems Biology & Applications of Models Life Components & Interconnections Continuity of Life & Central Dogma •Qualitative Models & Evidence Functional Genomics & Quantitative models Mutations & Selection

Qualitative biological statements (beliefs) and evidence

metabolism cryptic genes information transfer regulation type of regulation genetic unit regulated trigger trigger modulation transport cell processes cell structure location of gene products extrachromosomal DNA sites

Riley, GeneProtEC

(http://zeus.mbl.edu/dbadmin/genprotec/index.php3?func=list&find=0)

MIPS functions

(http://www.mips.biochem.mpg.de/proj/yeast/catalogues/funcat/)

Gene Ontology (nature of being)

The objective of <u>GO</u> is to provide controlled vocabularies for the description of the molecular function, biological process and cellular component of gene products. (http://www.geneontology.org/GO.doc.html)

• • •

Many aspects of biology are not included (domain structure, 3D structure, evolution, expression, etc.)... small molecules (<u>Klotho</u> or <u>LIGAND</u>)

(<u>http://www.ibc.wustl.edu/klotho</u>) , (http://www.genome.ad.jp/kegg/catalog/compounds.html)

Gene Ontology

GO (http://www.geneontology.org/GO.doc.html)

Molecular function

What a gene product can do without specifying where or when. (e.g. broad "enzyme"; narrower "adenylate cyclase")

Biological process

>1 distinct steps, time, transformation (broad: "signal transduction." narrower: "cAMP biosynthesis.")

• Cellular component

part of some larger object, (e.g. ribosome)_

Evidence for facts

GO (http://www.geneontology.org/GO.doc.html)

- IMP inferred from mutant phenotype
- IGI genetic interaction
- IPI physical interaction
- ISS sequence similarity
- IDA direct assay
- IEP expression pattern
- IEA electronic annotation
- TAS traceable author statement
- NAS non-traceable author statement

Direct observation

See C.elegans <u>cell lineage</u> & neural connections

(http://paradise.caltech.edu/~gibson/research/lineage.jpg)

Sources of Data for BioSystems Modeling:

```
Capillary electrophoresis
(DNA Sequencing) :
0.4Mb/day
```

```
Chromatography-Mass Spectrometry
(eg. peptide LC-ESI-MS) :
20Mb/day
```

```
Microarray scanners (eg. RNA): 300 Mb/day mpg
```

Other microscopy (e.g. subcell, cell, tissue networks)

Signaling PAthway Database <u>SPAD</u>

(http://www.grt.kyushuu.ac.jp/spad/menu.html)

Dynamic simulation of the human red blood cell blood cell metabolic network.

Jamshidi, et al(2001) Bioinformatics 17: 286-287.

Dominant alleles affecting variety of RBC proteins, malaria, drughemolysis, etc. Rare individually, common as a group.

Enzyme Kinetic Expressions

Phosphofructokinase

How do enzymes & substrates formally differ?

Catalysts increase the rate (&specificity) without being consumed.

Continuity of Life & Central Dogma

Self-assembly, Catalysis, Replication, Mutation, Selection Regulatory & Metabolic Networks

Polymers: Initiate, Elongate, Terminate, Fold, Modify, Localize, Degrade

Intro 2: Today's story, logic & goals Biological side of Computational Biology

Elements & Purification Systems Biology & Applications of Models Life Components & Interconnections Continuity of Life & Central Dogma Qualitative Models & Evidence •Functional Genomics & Quantitative models Mutations & Selection

Sources of Data for BioSystems Modeling:

```
Capillary electrophoresis
(DNA Sequencing) :
0.4Mb/day
```

```
Chromatography-Mass Spectrometry
(eg. peptide LC-ESI-MS) :
20Mb/day
```

Microarray scanners (eg. RNA): 300 Mb/day mpg

Other microscopy (e.g. subcell, cell, tissue networks)

Structural Genomics

(the challenge of distant homologs) $? \downarrow ?$

Functional Genomics

(quantitative ligand interactions)

100% Sequence Identity:

- 1. Enolase Enzyme
- 2. Major Eye Lens Protein

100% Sequence Identity:1. Thioredoxin Redox

2. DNA Polymerase Processivity

mRNA expression data

Affymetrix *E. coli* oligonucleotide array

Spotted microarray mpg

What is functional genomics?

Function (1): Effects of a mutation on fitness (reproduction) summed over typical environments.

- Function (2): Kinetic/structural mechanisms.
- Function (3): Utility for engineering relative to a non-reproductive objective function.

Proof : Given the assumptions, the odds are that the hypothesis is wrong less than 5% of the time, keeping in mind (often hidden) multiple hypotheses.

Is the hypothesis suggested by one large dataset already answered in another dataset?

Genomics Attitude

Whole systems:

Less individual gene- or hypothesis-driven experiments; Automation from cells to data to **model** as a proof of protocol.

Quality of data: DNA sequencing raw error: 0.01% to 10%. Consensus of 5 to 10 error: 0.01% (1e-4)

Completion: No holes, i.e. regions with data of quality less than a goal (typically set by cost or needs of subsequent projects).

Impossible: The cost is higher than reasonable for a given a time-frame and quality assuming no technology breakthroughs. Cost of computing vs. experimental "wet-computers".

Intro 2: Today's story, logic & goals Biological side of Computational Biology

Elements & Purification Systems Biology & Applications of Models Life Components & Interconnections Continuity of Life & Central Dogma Qualitative Models & Evidence Functional Genomics & Quantitative models •Mutations & Selection

Mutations and selection

Types of Mutants

Null: PKUDosage: Trisomy 21Conditional (e.g. temperature or chemical)Gain of function: HbSAltered ligand specificity

Multiplex Competitive Growth Experiments

Growth & decay dy/dt = ky $y = Ae^{kt}$; e = 2.71828...

k=rate constant; half-life= $\log_e(2)/k$

Ratio of strains over environments, e, times, t_e , selection coefficients, s_e , $R = R_o \exp[-\Sigma s_e t_e]$

80% of 34 random yeast insertions have s<-0.3% or s>0.3% t=160 generations, e=1 (rich media); \sim 50% for t=15, e=7. Should allow comparisons with population allele models.

Multiplex competitive growth experiments: Thatcher, et al. (1998) PNAS 95:253. Link AJ (1994) thesis; (1997) J Bacteriol 179:6228. Smith V, et al. (1995) PNAS 92:6479. Shoemaker D, et al. (1996) Nat Genet 14:450.

Intro 2: Today's story, logic & goals Biological side of Computational Biology

Elements & Purification Systems Biology & Applications of Models Life Components & Interconnections Continuity of Life & Central Dogma Qualitative Models & Evidence Functional Genomics & Quantitative models Mutations & Selection