
Bphys/Biol E-101 = HST 508 = GEN224


Your grade is based on six problem sets and a course project, 
with emphasis on collaboration across disciplines. 

Open to: upper level undergraduates, and all graduate students. 
The prerequisites are basic knowledge of molecular biology, 
statistics, & computing. 

Please hand in your questionnaire after this class. 

First problem set is due before Lecture 3 starts 
via email or paper depending on your section TF. 

Harvard-MIT Division of Health Sciences and Technology 1 
HST.508: Genomics and Computational Biology 



Bio 101: Genomics & 

Computational Biology


Week#1 Intro 1: Computing, Statistics, Perl, Mathematica 
Week#2 Intro 2: Biology, comparative genomics, models & evidence, applications 
Week#3 DNA 1: Polymorphisms, populations, statistics, pharmacogenomics, databases 
Week#4 DNA 2: Dynamic programming, Blast, multi-alignment, HiddenMarkovModels 
Week#5 RNA 1: 3D-structure, microarrays, library sequencing & quantitation concepts 
Week#6 RNA 2: Clustering by gene or condition, DNA/RNA motifs. 
Week#7 Protein 1: 3D structural genomics, homology, dynamics, function & drug design 
Week#8 Protein 2: Mass spectrometry, modifications, quantitation of interactions 
Week#9 Network 1: Metabolic kinetic & flux balance optimization methods 
Week#10 Network 2: Molecular computing, self-assembly, genetic algorithms, neural-nets 
Week#11 Network 3: Cellular, developmental, social, ecological & commercial models 
Week#12 Project presentations 
Week#13 Project Presentations 
Week#14 Project Presentations 
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Intro 1: Today's story, logic & goals


Life & computers : Self-assembly required 
Discrete & continuous models 
Minimal life & programs 

Catalysis & Replication

Differential equations 

Directed graphs & pedigrees


Mutation & the Single Molecules models 
Bell curve statistics 

Selection & optimality
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6

gggatttagctcagtt
gggagagcgccagact
gaa          gat
ttg          gag
gtcctgtgttcgatcc
acagaattcgcacca

Post- 300 
genomes & 

3D structures
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Discrete Continuous


a sequence a weight matrix of sequences 
lattice molecular coordinates 
digital analog (16 bit A2D converters) 

Σ ∆x � dx 
neural/regulatory on/off gradients & graded responses 

sum of black & white gray 
essential/neutral conditional mutation 

alive/not probability of replication 
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Bits (discrete)

bit = binary digit

1 base >= 2 bits

1 byte = 8 bits


+ Kilo Mega Giga Tera  Peta Exa Zetta Yotta +

3 6 9 12 15 18 21 24


- milli  micro nano pico femto  atto zepto yocto -


Kibi Mebi Gibi Tebi Pebi Exbi

220 230 240 250 2601024 = 210 

http://physics.nist.gov/cuu/Units/prefixes.html
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Defined quantitative measures


Seven basic (Système International) SI units: 
s, m, kg, mol, K, cd, A 
(some measures at precision of 14 significant figures)


Quantal: Planck time, length: 10-43 seconds, 10-35 meters, 
mol=6.0225 1023 entities. 

casa.colorado.edu/~ajsh/sr/postulate.html 
physics.nist.gov/cuu/Uncertainty/ 
scienceworld.wolfram.com/physics/SI.html 

9 



Quantitative definition of life? 

Historical/Terrestrial Biology vs "General Biology" 

Probability of replication … of complexity from simplicity

(in a specific environment) 

Robustness/Evolvability 
(in a variety of environments) 

Examples: mules, fires, nucleating crystals, 

pollinated flowers, viruses, predators, 

molecular ligation, factories, self-assembling machines.
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Complexity definitions


1. Computational Complexity = speed/memory scaling  P, NP


2. Algorithmic Randomness (Chaitin-Kolmogorov) 

3. Entropy/information

4. Physical complexity
(Bernoulli-Turing Machine) 

Crutchfield & Young in Complexity, Entropy, & the Physics of Information 1990 pp.223-269 
www.santafe.edu/~jpc/JPCPapers.html 

11 



Complexity & Entropy/Information


www.santafe.edu/~jpc/JPCPapers.html
 12 



Why Model?


•	 To understand biological/chemical data. 
(& design useful modifications) 

•	 To share data we need to be able to 
search, merge, & check data via models. 

•	 Integrating diverse data types can reduce 
random & systematic errors. 

13 



Which models will we search, merge & 

check in this course?


•	 Sequence: Dynamic programming, assembly, 
translation & trees. 

•	 3D structure: motifs, catalysis, complementary 
surfaces – energy and kinetic optima 

•	 Functional genomics: clustering 
•	 Systems: qualitative & boolean networks 
•	 Systems: differential equations & stochastic 
•	 Network optimization: Linear programming 

14 



Intro 1: Today's story, logic & goals


Life & computers : Self-assembly required 
Discrete & continuous models 
Minimal life & programs 

Catalysis & Replication

Differential equations 

Directed graphs & pedigrees


Mutation & the Single Molecules models 
Bell curve statistics 

Selection & optimality
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16

of RNA-based life: C,H,N,O,P

Useful for many species:
Na, K, Fe, Cl, Ca, Mg, Mo, Mn, S, Se, Cu, Ni, Co, Si

Elements 



Minimal self-replicating units 

Minimal theoretical composition:  5 elements: C,H,N,O,P 
Environment = water, NH4

+, 4 NTP-s, lipids 

Johnston et al. Science 2001 292:1319-1325 RNA-catalyzed RNA polymerization: 
accurate and general RNA-templated primer extension 
(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11358999&dopt=Abstract). 

Minimal programs 
perl -e "print exp(1);" 2.71828182845905 
excel: = EXP(1) 2.71828182845905000000000 
f77: print*, exp(1.q0) 2.71828182845904523536028747135266 
Mathematica: N[ Exp[1],100] 2.71828182845904523536028747135266249775 

7247093699959574966967627724076630353547594571382178525166427


• Underlying these are algorithms for arctangent and hardware for RAM and printing. 
• Beware of approximations & boundaries. 
• Time & memory limitations. E.g. first two above 64 bit floating point: 

52 bits for mantissa (= 15 decimal digits),  10 for exponent, 1 for +/- signs. 17 



Self-replication of complementary 

nucleotide-based oligomers


5’ccg + ccg => 
5’CGGCGG 

5’ccgccg 

CGG + CGG => CGGCGG 
ccgccg 

Sievers & Kiedrowski 1994 Nature 369:221 
Zielinski & Orgel 1987 Nature 327:347 18 



Why Perl & Mathmatica? 


In the hierarchy of languages, Perl is a "high level" language, 

optimized for easy coding of string searching & string manipulation.

It is well suited to web applications and is "open source" 

(so that it is inexpensive and easily extended).

It has a very easy learning curve relative to C/C++ 

but is similar in a few way to C in syntax.


Mathematica is intrinsically stronger on math

(symbolic & numeric) & graphics.
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Facts of Life 101


Where do parasites come from?

(computer & biological viral codes) 

Over $12 billion/year 20 M dead (worse than black plague 
& 1918 Flu)on computer viruses (ref) 

AIDS - HIV-1 (download)
(http://virus.idg.net/crd_virus_126660.html) 
(http://www.ncbi.nlm.nih.gov/htbin-

post/Taxonomy/wgetorg?id=11676) 

Polymerase drug resistance mutations 
M41L, D67N, T69D, L210W, T215Y, H208Y 

PISPIETVPVKLKPGMDGPK 
VKQWPLTEEK 

IKALIEICAE LEKDGKISKI 
GPVNPYDTPV FAIKKKNSDK 

WRKLVDFREL NKRTQDFCEV 

20 



Conceptual connections


Concept Computers Organisms 
Instructions Program Genome 
Bits 0,1 a,c,g,t
Stable memory Disk,tape DNA 
Active memory RAM RNA 
Environment Sockets,people Water,salts
I/O AD/DA proteins
Monomer Minerals Nucleotide 
Polymer chip DNA,RNA,protein
Replication Factories 1e-15 liter cell sap
Sensor/In Keys,scanner Chem/photo receptor
Actuator/Out Printer,motor Actomyosin
Communicate Internet,IR Pheromones, song 

21 



Transistors > inverters > registers > binary 

adders > compilers > application programs


22


Spice simulation of a CMOS inverter (figures)(http://et.nmsu.edu/~etti/spring97/electronics/cmos/cmostran.html) 



Self-compiling & self-assembling


Complementary surfaces 
Watson-Crick base pair 
(Nature April 25, 1953) 
(http://www.sil.si.edu/Exhibitions/Science-and-the-Artists-Book/bioc.htm#27) 

23 



Minimal Life: 

Self-assembly, Catalysis, Replication, Mutation, Selection


RNA 

Monomers 
Cell boundary 

24 



Replicator diversity

Self-assembly, Catalysis, Replication, Mutation, Selection 


Polymerization & folding (Revised Central Dogma)


Monomers 

DNA RNA Protein 

Growth rate 

Polymers: Initiate, Elongate, Terminate, Fold, Modify, Localize, Degrade 25




Maximal Life: 

Self-assembly, Catalysis, Replication, Mutation, Selection 


Regulatory & Metabolic Networks


Interactions

Metabolites 

RNA Protein DNA 

Growth rate 
Expression 

Polymers: Initiate, Elongate, Terminate, Fold, Modify, Localize, Degrade

26 



Rorschach Test
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Growth & decay

dy/dt = ky 

y = Aekt ; e = 2.71828...


-5 
0 
5 

10 
15 

20 
25 
30 
35 
40 

-4 -3 -2 -1 0 1 2 3 4 

) 
) 

k=rate constant; half-life=loge(2)/k 

y 

t-10 

exp(kt
exp(-kt
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What limits exponential growth? 


Exhaustion of resources

Accumulation of waste products


What limits exponential decay? 
Finite particles, stochastic (quantal) limits 

y Log[y]


t t

29 



30

Solving differential equations


Mathematica: Analytical (formal, symbolic) 
In[2]:= DSolve[ {y'[t] == y[t], y[0]==1}, y[t], t ] 
Out[2]= {{y[t]= Et }} 

Numerical  (&graphical)

NDSolve[{y'[t] == y[t], y[0] == 1}, y, {t, 0, 3}] 
Plot[Evaluate[ y[t] /. % ], {t, 0, 3}] 

y 

t 
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(Hyper)exponential growth
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See http://www.faughnan.com/poverty.html 
See http://www.kurzweilai.net/meme/frame.html?main=/articles/art0184.html 
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Computational power of neural systems


1,000 MIPS (million instructions per second) needed to derive edge or motion 
detections from video "ten times per second to match the retina … The 1,500 
cubic centimeter human brain is about 100,000 times as large as the retina, 
suggesting that matching overall human behavior will take about 100 million 
MIPS of computer power … The most powerful experimental supercomputers 
in 1998, costing tens of millions of dollars, can do a few million MIPS." 

"The ratio of memory to speed has remained constant during computing history 
[at Mbyte/MIPS] … [the human] 100 trillion synapse brain would hold the 
equivalent 100 million megabytes." 
--Hans Moravec http://www.frc.ri.cmu.edu/~hpm/book97/ch3/retina.comment.html 

2002: the ESC is 35 Tflops & 10Tbytes. http://www.top500.org/ 
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Post-exponential growth & chaos


k = growth rate 

y= population size 

Pop[k_][y_] := k y (1 - y); 
ListPlot[NestList[Pop[1.01], 0.0001, 3000], PlotJoined->True]; 

Pop[4], 0.0001, 50] 
http://library.wolfram.com/examples/iteration/iterate.nb 
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Intro 1: Today's story, logic & goals


Life & computers : Self-assembly required 
Discrete & continuous models 
Minimal life & programs 

Catalysis & Replication

Differential equations 

Directed graphs & pedigrees


Mutation & the Single Molecules models 
Bell curve statistics 

Selection & optimality
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Inherited Mutations & Graphs


Directed Acyclic Graph (DAG)

Example: a mutation pedigree

Nodes = an organism, edges = replication with mutation 

time 

hissa.nist.gov/dads/HTML/directAcycGraph.html 
35 



Directed Graphs


Directed Acyclic Graph: Cyclic:

Biopolymer backbone Polymer contact maps
Phylogeny Metabolic & 

Regulatory NetsPedigree 

Time independent or implicitTime 
36 



System models Feature attractions


E. coli chemotaxis Adaptive, spatial effects 
Red blood cell metabolism Enzyme kinetics 
Cell division cycle Checkpoints 
Circadian rhythm Long time delays 
Plasmid DNA replication Single molecule precision 
Phage λ switch Stochastic expression 

also, all have large genetic & kinetic datsets.


37 



Intro 1: Today's story, logic & goals


Life & computers : Self-assembly required 
Discrete & continuous models 
Minimal life & programs 

Catalysis & Replication

Differential equations 

Directed graphs & pedigrees


Mutation & the Single Molecules models 
Bell curve statistics 

Selection & optimality
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Bionano-machines


Types of biomodels. 

Discrete, e.g. conversion stoichiometry

Rates/probabilities of interactions


Modules vs 

“extensively coupled networks”


39Maniatis & Reed Nature 416, 499 - 506 (2002) 



Types of Systems Interaction Models


Quantum Electrodynamics 
Quantum mechanics 
Molecular mechanics 
Master equations 
Fokker-Planck approx. 
Macroscopic rates ODE 
Flux Balance Optima 
Thermodynamic models 
Steady State 
Metabolic Control Analysis 
Spatially inhomogenous 
Population dynamics 

subatomic 
electron clouds 
spherical atoms           nm-fs 
stochastic single molecules 
stochastic 
Concentration & time (C,t)   
dCik/dt optimal steady state 
dCik/dt = 0 k reversible reactions 

ΣdCik/dt = 0 (sum k reactions) 

d(dCik/dt)/dCj (i = chem.species) 

dCi/dx 

as above km-yr


Increasing scope, decreasing resolution
 40 



How to do single DNA molecule manipulations?
 41 



One DNA molecule per cell


Replicate to two DNAs.

Now segregate to two daughter cells

If totally random, half of the cells will have too many or too few.

What about human cells with 46 chromosomes (DNA molecules)?


Dosage & loss of heterozygosity & major sources of mutation

in human populations and cancer.


For example, trisomy 21, a 1.5-fold dosage with enormous impact.


42 



Most RNAs < 1 molecule per cell.


See Yeast RNA

25-mer array in 
Wodicka, Lockhart, et al. (1997) 
Nature Biotech 15:1359-67 

(ref) 
(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9415887&dopt=Abstract) 

43 
43 



Mean, variance, & 
linear correlation coefficient 

Expectation E (rth moment) of random variables X for any distribution f(X) 

First moment= Mean µ ; variance σ2 and standard deviation σ 

E(Xr) = ∑ Xr f(X) µ = E(X) σ2 = E[(X-µ)2] 

Pearson correlation coefficient C= cov(X,Y) =  Ε[(X-µX )(Y-µY)]/(σX σY) 


Independent X,Y implies C = 0, 

but C =0 does not imply independent X,Y. (e.g. Y=X2)


P = TDIST(C*sqrt((N-2)/(1-C2)) with dof= N-2 and two tails.


where N is the sample size.


www.stat.unipg.it/IASC/Misc-stat-soft.html

44 



Mutations happen


0 

(

i

Binomial (

0.00 
0.01 
0.02 
0.03 
0.04 
0.05 
0.06 
0.07 
0.08 
0.09 
0.10 

10  20  30  40  50  

Normal m=20, s=4.47) 

Po sson (m=20) 

N=2020, p=.01) 
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Binomial frequency distribution as a function of 

X ∈ {int 0 ... n}


p and q 0 ≤ p ≤ q ≤ 1 q = 1 – p        two types of object or event. 

Factorials 0! = 1 n! = n(n-1)! 

Combinatorics (C= # subsets of size X are possible from a  set of total size of n) 
n!


X!(n-X)! = C(n,X) 


B(X) = C(n, X) pX qn-X µ = np σ2 = npq 

(p+q)n = ∑ B(X) = 1 

B(X: 350, n: 700, p: 0.1) = 1.53148×10-157 

=PDF[ BinomialDistribution[700, 0.1], 350]  Mathematica 
~= 0.00 =BINOMDIST(350,700,0.1,0) Excel 46 



Poisson frequency distribution as a function of X ∈ {int 0 ...∞}


µx e-µP(X) = P(X-1) µ/X = / X! σ2 = µ


n large & p small → P(X) ≅ B(X) µ = np


For example, estimating the expected number of positives 


in a given sized library of cDNAs, genomic clones,


combinatorial chemistry, etc. X= # of hits.


-µZero hit term = e 

47 



Normal frequency distribution as a function of X ∈ {-∞... ∞}


Z= (X-µ)/σ 

Normalized (standardized) variables 
1/2
N(X) = exp(-Ζ2/2) / (2πσ)


probability density function


npq large → N(X) ≅ B(X) 

48 



One DNA molecule per cell


Replicate to two DNAs.

Now segregate to two daughter cells

If totally random, half of the cells will have too many or too few.

What about human cells with 46 chromosomes (DNA molecules)?


Exactly 46 chromosomes (but any 46):

B(X) = C(n,x) px qn-x 

n=46*2; x=46; p=0.5 But what about exactly
B(X)= 0.083 
the correct 46? 

µx e-µP(X) = / X! 0.546 = 1.4 x 10-14 
µ=X=np=46, P(X)=0.058 

Might this select for non random segregation? 49 



What are random numbers good for? 


•Simulations.

•Permutation statistics.

50 



Where do random numbers come from?

X ∈ {0,1}


perl -e "print rand(1);" 0.116790771484375 
0.8798828125 0.692291259765625 0.1729736328125 

excel: = RAND() 	 0.4854394999892640 0.6391685278993980 
0.1009497853098360 

f77: write(*,'(f29.15)') rand(1) 0.513854980468750 
0.175720214843750 0.308624267578125 

Mathematica: Random[Real, {0,1}] 0.7474293274369694 
0.5081794113149011 0.02423389638451016 

51 



Where do random numbers come from 

really? 


Monte Carlo.

Uniformly distributed random variates Xi = remainder(aXi-1 / m)


For example, a= 75 m= 231 -1


Given two Xj Xk such uniform random variates,


Normally distributed random variates can be made 


(with µX = 0 σX = 1)

Xi = sqrt(-2log(Xj)) cos(2πXk) (NR, Press et al. p. 279-89) 

(http://www.nr.com/) , (http://lib-www.lanl.gov/numerical/bookcpdf/c7-1.pdf). 
52 



Mutations happen


0 

(

i

Binomial (

0.00 
0.01 
0.02 
0.03 
0.04 
0.05 
0.06 
0.07 
0.08 
0.09 
0.10 

10  20  30  40  50  

Normal m=20, s=4.47) 

Po sson (m=20) 

N=2020, p=.01) 
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Intro 1: Summary


Life & computers : Self-assembly required 
Discrete & continuous models 
Minimal life & programs 

Catalysis & Replication 
Differential equations 
Directed graphs & pedigrees 

Mutation & the Single Molecules models 
Bell curve statistics 

Selection & optimality
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Computation and Biology share a common obsession with strings of letters, which are 
translated into complex 3D and 4D structures.  Evolution (biological, technical, and 
cultural) will probably continue to act via manipulation of symbols (A, C, G, T, 0 & 1 , A­
Z) plus "selection" at the highest "systems" levels.  The power of these systems lies in 
complexity. 
Simple representations of them (fractals, surgery, and drugs)  may not be as fruitful as 
detailed programming of the symbols aided by hierarchical models and highly-parallel 
testing. Local decisions no longer stay local.Examples are the Internet, computer viruses, 
genetically modified organisms (GMOs), replicating nanotechnology, bioterrorism, global 
warming, and biological species transport. Information (& education) is becoming 
increasingly easy to spread (and hard to control). We are on the verge of begin able to 
collect data on almost any system at costs of 
terabytes-per-dollar. 

The world is manipulating increasingly complex systems, many at steeper-than-exponential 
rates. Much of this is happening without much modeling.  Some people predict a 
"singularity" in our lifetime or at least the creation of systems more intelligent (and/or more 
proliferative) than we are (possibly as little as 100 Teraflops/terabytes).  We need to not 
only teach our students how to cope with this, but start thinking about how to teach these 
"intelligent" systems as if they were students.  As integrated circuits reach their limit soon, 
the next generation of computers may be based on quantum computing and/or biologically 
inspired. We need to be able to teach our students about this revolution, and via the Internet 
teach anyone else listening. 55 


