Harvard-MIT Division of Health Sciences and Technology HST.410J: Projects in Microscale Engineering for the Life Sciences, Spring 2007 Course Directors: Prof. Dennis Freeman, Prof. Martha Gray, and Prof. Alexander Aranyosi

## HST.410J/6.021J

Last time: Quantitative models of diffusion.

Diffusion: transport of solute due to gradient in solute

concentration. Fick's law:



Microscopic basis: Random walk model.



Random Walk Model

- number of solute particles << number of solvent particles
- motion of solute determined by collisions with solvent (ignore solute-solute interactions)
- focus on 1 solute particle, assume motions of others are statistically identical

Every  $\tau$  seconds, solute particle gets hit by solvent particle.

In response, solute particle is equally likely to move +l or -l.  $\tau$  = mean free time; l = mean free path



Figure from Weiss, T. F. *Cellular Biophysics, Vol. I.* Cambridge, MA: MIT Press, 1996. Courtesy of MIT Press. Used with permission.

> Figure from Weiss, T. F. *Cellular Biophysics, Vol. I.* Cambridge, MA: MIT Press, 1996. Courtesy of MIT Press. Used with permission.

## Lecture 6 February 27, 2007





| 1                                                                      | E[m n=0] = 0 | $E[m^2 n=0] = 0$ |
|------------------------------------------------------------------------|--------------|------------------|
| $\frac{1}{2}$ $\frac{1}{2}$                                            | E[m n=1] = 0 | $E[m^2 n=1] = 1$ |
| $\frac{1}{4}  \frac{2}{4}  \frac{1}{4}$                                | E[m n=2] = 0 | $E[m^2 n=2]=2$   |
| $\frac{1}{8}$ $\frac{3}{8}$ $\frac{3}{8}$ $\frac{1}{8}$                | E[m n=3] = 0 | $E[m^2 n=3] = 3$ |
| $\frac{1}{16}  \frac{4}{16}  \frac{6}{16}  \frac{4}{16}  \frac{1}{16}$ | E[m n=4] = 0 | $E[m^2 n=4] = 4$ |
|                                                                        |              |                  |

 $E[m|n = n_0] = 0$   $E[m^2|n = n_0] = n_0$ 

x >> l  $t >> \tau$  binomial  $\rightarrow$  gaussian





x >> l  $t >> \tau$  binomial  $\rightarrow$  gaussian









Speed of diffusion

$$D = \frac{\left(x_{1/2}\right)^2}{t_{1/2}}$$

$$x_{1/2} = \sqrt{D t_{1/2}}$$

$$t_{1/2}$$

Apply Fick's law to dye demonstration



Fick's law:

$$\phi(x,t) = -D \frac{\partial c(x,t)}{\partial x}$$

• provides information about time "t" only

• need new information to get from time "t" to time "t+ $\Delta t$ "





Diffusion Equation: 
$$\frac{\partial c(x,t)}{\partial t} = D \frac{\partial^2 c(x,t)}{\partial x^2}$$

$$\frac{c(x,t)}{\partial t} = D \frac{\partial^2 c(x,t)}{\partial x^2}$$

Solution:

$$c(x,t) = \frac{n_0}{\sqrt{4\pi Dt}} e^{-\frac{x^2}{4Dt}}$$

Speed of diffusion

$$D = \frac{\left(x_{1/2}\right)^2}{t_{1/2}}$$



## Importance of Scale

$$t_{1/2} = \frac{x_{1/2}^2}{D}$$
;  $D = 10^{-5} \frac{\text{cm}^2}{\text{s}}$  for small solutes (e.g., Na<sup>+</sup>)

|                | <i>x</i> <sub>1/2</sub> | <i>t</i> <sub>1/2</sub>                  |
|----------------|-------------------------|------------------------------------------|
| membrane sized | 10 nm                   | $\frac{1}{10}$ µsec                      |
| cell sized     | 10 µm                   | $\frac{1}{10}$ sec                       |
| dime sized     | 10 mm                   | $10^5 \text{ sec} \approx 1 \text{ day}$ |

## Fluid Dynamics: Flows through Channels

