IN SUMMARY Polycystic Ovarian Syndrome

POLYCYSTIC OVARIAN SYNDROME

Presence of oligo- or anovulation in combination with hyperandrogenism.

- Chronic anovulation may present as irregular menstrual periods or amenorrhea.
- It is not essential to document anovulation by ultrasonography or progesterone measurements in the presence of a clear clinical history
- PCOS occurs in 85 to 90% of women with oligomenorrhea and in 30-40% of women with amenorrhea
- Diagnosed either by clinical (hirsutism) or laboratory (elevated testosterone or androstenedione)
- Should not be diagnosed if evidence of other causes of oligo-ovulation and hyperandrogenism(ovarian androgen secreting tumor or nonclassical adrenal hyperplasia)
- Prevalence of PCOS is approximately 5–7% of women of reproductive age
- 50% of PCOS women are obese and tend to have an android pattern of obesity

Elevated levels of serum LH - increased LH pulse amplitude and LH pulse frequency

- Steady-state levels of gonadotropins and ovarian steroids
 - "chronic estrous state"
 - Proliferation and hyperplasia of the endometrium
 - Can lead to unpredictable bleeding episodes
 - Unopposed estrogen exposure -confirmed by progesterone withdrawal test
- Women with PCOS have higher mean concentrations of LH
 - Increased bioactivity of LH
 - Low to low-normal levels of follicle stimulating hormone
- Obese PCOS women do not have elevated LH levels

 o normal LH level or normal LH/FSH ratio does not rule out PCOS
 o LH/FSH ratio is now not included in the diagnostic criteria of PCOS
- In research studies almost all women with PCOS have elevated LH secretion.
- In clinical practice difficult to use a single measurement of LH to diagnose PCOS,
 - LH is secreted in a pulsatile manner
 - Normal range of serum LH concentration decreases with increasing body mass index (BMI)

Association between hyperinsulinemia and PCOS

- First noted by 1980
- Significant positive correlation between insulin, androstenedione and testosterone levels among PCOS women
- It is estimated that 20-40% of PCOS women have impaired glucose tolerance
 - Seven-fold higher than the rates in age and weight-matched women
 - Prevalence of type 2 diabetes mellitus is also increased in PCOS women (15% versus 2.3% in normal women)
 - Lean PCOS women have lower rates of carbohydrate intolerance
 - Lean PCOS women still have higher rates than age and weightmatched controls. PCOS is associated with insulin resistance independent of total or fat-free body mass
 - Obese PCOS women are more insulin resistant than obese non-PCOS or non-obese PCOS women
- Pancreatic beta cell secretory dysfunction in a subset of PCOS women
 - Probably has the highest risk of developing carbohydrate intolerance
 - Type 2 diabetes.
 - Oral glucose tolerance tests recommended for obese PCOS patients
- PCOS in 8 out 30 premenopausal women with type 2 diabetes
 - Insulin resistance is characterized by post-receptor defect in the action of insulin
 - Cause of this defect is still being elucidated

Action of insulin

- Binds to the cell-surface receptor
- Receptor undergoes auto-phosphorylation on specific tyrosine residues
- Accomplished by activation of insulin receptor tyrosine kinase
- Activated receptor then activates insulin receptor substrates (IRS-1,2 and 3)
- Binds to signaling molecules such as PI3 kinase
- Activates downstream signaling
- Leads to insulin-mediated glucose transport

PCO insulin resistance

- o Abnormalities in both insulin receptor tyrosine kinase
- Mediators distal to the receptor are present in insulin resistance states
- Adipocytes from women with PCOS
- Adipocyte insensitivity to inhibition of lipolysis by insulin
- Decrease in maximal rates of adipocyte glucose uptake
- Occur in PCOS in the absence of obesity
- Decreased insulin receptor auto-phosphorylation in 50% of fibroblasts removed from PCOS women
- o Due to increased receptor serine phosphorylation
- Serine phosphorylation associated with decreased insulin receptor tyrosine auto-phosphorylation
- In vitro human theca cell studies
 - o Insulin has direct stimulatory effects on ovarian steroidogenesis
 - Insulin produced a greater increase in androgen production by theca cells in PCOS than in cells obtained without PCOS
 - Effect is mediated specifically through insulin receptor
 - \circ $\,$ Insulin enhances the effect of LH on preovulatory ovarian follicles $\,$
 - Premature activation and subsequent follicle arrest
 - hyperinsulinemia (due to insulin resistance) drives the LH effect on ovarian theca cells
 - Causes androgen excess which are intrinsically programmed to produce more androgen
 - Excess androgens are known to interfere with the process of follicular maturation
 - Inhibiting ovulation
 - Producing more arrested follicles
- 1983 it was proposed that severe hyperinsulinemia caused by insulin resistance results in ovarian hyperandrogenism (Barbieri & Ryan)
- PCOS is associated with insulin resistance independent of total or fat free body mass
 - Hyperandrogenism, insulin resistance and acanthosis nigricans syndrome
- Cause of the insulin resistance germ line mutation in the insulin receptor gene
 - Prevents normal function of the insulin receptor.
- Puberty: LH secretion rises
 - Severe insulin resistance
 - LH stimulation \rightarrow hypersecretion of testosterone by the ovary
 - Often present with severe insulin resistance and hyperandrogenism including virilization and amenorrhea

IN SUMMARY Polycystic Ovarian Syndrome

- Acanthosis nigricans
 - Dermatologic manifestation of the hyperinsulinemia
 - Hyperandrogenism
- Clinical criteria suggestive of insulin resistance
 - BMI greater than 27 kg/m2
 - Waist-to-hip ratio greater than 0.85
 - Presence of acanthosis nigricans
- Laboratory criteria
 - Elevated fasting insulin concentration
 - Elevated glucose-to-insulin ratio
- Must have 2 of the following 3 manifestations
 - o Irregular or absent ovulation
 - Elevated levels of androgenic hormones
 - o Enlarged ovaries containing at least 12 follicles each
- Polycystic ovaries are defined on ultrasound
 - To contain 12 or more follicles
 - Measuring 2 to 9 mm in diameter
 - Increased volume of 10 mL or greater
 - Only one ovary fulfilling these criteria is enough
- Polycystic ovaries are not necessary feature of PCOS
 - Many women with polycystic ovaries do not have PCOS
 - Should not be considered to have PCOS unless there is corroborating clinical evidence of the syndrome.
- Treatment of insulin resistance
 - Can reduce ovarian androgen secretion and
 - Cause the resumption of ovulatory menses.
 - Cause–effect relationship between insulin resistance and hyperandrogenism–anovulation.
- Typical Presentation
 - o Chief compliant of hirsutism
 - Irregular menses
 - o Infertility
- Treatment of Hirsutism
 - Combination of an estrogen–progestin contraceptive
 - Antiandrogen (spironolactone)

- Standard treatment for infertility
 - Clomiphene citrate and weight loss

Treatment with insulin sensitizers, metformin (biguanide which reduces plasma glucose concentrations in type 2 diabetes) and thiazolidinediones (Troglitazone and Rosiglitazone), improve both metabolic and hormonal patterns and also improve ovulation in PCOS

- Metformin
 - Does not lead to weight gain
 - Can induce weight loss
 - Predominantly works by reducing hepatic glucose production
 - Inhibiting gluconeogenesis both directly and indirectly (by decreasing free fatty acid concentrations)
 - o May slightly improve peripheral insulin sensitivity in PCOS
 - Reductions in androgen levels
 - Improvements in ovulation
 - Reduce the high rates of gestational diabetes in PCOS
- Thiazolidinediones (TZDs)
 - Decrease peripheral insulin resistance
 - Enhancing insulin action
 - Skeletal muscle
 - Liver
 - Adipose tissue

Mechanism of action

- Binding and modulating the activity of a family of nuclear transcription factors
 - Peroxisome proliferator-activated receptors (PPARS)
- Shown an improvement of the androgen levels
 - Ovulation rate
 - Enhanced insulin sensitivity
 - No reduction in the weight of subjects
 - Decrease testosterone, androstenedione, DHEA
 - Increase in SHBG
 - Thereby causing a decrease in free testosterone levels
 - Improvement in insulin sensitivity
 - o Improved both spontaneous and clomiphene-induced ovulation rates
 - o Independent effects on ovarian steroidogenesis
 - o Direct effect of TZD apart from improvement of insulin resistance ?

IN SUMMARY Polycystic Ovarian Syndrome

- PCOS women have higher circulating levels of inflammatory mediators
 - C-reactive protein
 - Tumor necrosis factor
 - Tissue plasminogen activator
 - Plasminogen activator inhibitor-1 (PAI-1)
- Hirsutism occurs in approximately 80% of PCOS women
- Documented by measuring androgen levels in the blood
 - Free testosterone
 - Total testosterone
 - Androstenedione
 - Dehydroepiandrosterone (DHEA)
- In obese PCOS women
 - Sex hormone binding globulin (SHBG) levels are decreased
 - Leads to an increase in free testosterone levels
 - Insulin is a negative regulator of the production of SHBG by the liver
 - SHBG levels are decreased in hyperinsulinemic conditions
 - o Concentrations of sulfated DHEA (DHEAS) are also increased
 - Secreted exclusively by the adrenal glands
 - Mechanism of increased DHEAS production by the adrenals unknown
 - Insulin ?
 - IGF-1 ?
- Under influence of low but constant levels of FSH
 - Multiple follicles of the ovary are stimulated
 - Do not achieve maturation
 - o Lifespan of the follicles may extend over several months
 - Leading to multiple follicular cysts
 - Luteinized in response to constant and relatively high LH levels
 - o "arrested" follicles provide a constant supply of steroids
 - Atretic follicle becomes an androgenic follicle
 - o Atretic follicles are deficient in aromatase activity
- Follicular cells from the small follicles of polycystic ovaries
 - Produce small amounts of estradiol
 - Show a dramatic increase in estrogen production when stimulated by FSH or IGF-1
 - FSH therapy induces a larger cohort of follicles to develop in women with PCOS
 - o deficient in vivo ovarian response to FSH
 - Due to impaired interaction between signaling pathways associated with FSH and IGF1 ?

Figure removed due to copyright restrictions.

References: Dhindsa G, Bhatia R, Dhindsa M, Bhatia V. Insulin resistance, insulin sensitization and inflammation in polycystic ovarian syndrome. J Postgrad Med 2004;50:140-144 **** Excellent review of topic of PCO – most of above abstracted from this paper *****

Robert L. Barbieri, Metformin for the Treatment of Polycystic Ovary Syndrome New Eng;land Journal of Medicine Vol. 101, No. 4, April 2003 ***** Excellent review of use of Metformin *****

FUNDAMENTAL QUESTIONS

- 1. Describe the PCO syndrome.
- 2. Describe the relationship of PCO with carbohydrate metabolism.
- 3. What is metformin? What benefit does it confer when given to women with PCO?
- 4. Where are androgens produced in the ovary?
- 5. What are some clinical problems associated with PCO?
- 6. What happens under the influence of sustained low levels of FSH?
- 7. Name some inflammatory mediators?
- 8. What is the role of obesity in PCO?
- 9. What happens to SHBG in obese women with PCO?
- 10. What is acanthosis nigricans?
- 11. Is hirsuitism common in PCO?