ESD: Recitation \#6

Revisions

- Four Steps to Happiness
- Z-transforms and s-transforms
- Common PMFs and PDFs
- Poisson processes and random incidence
- Convolution
- Sampling problems
- Spatial models
- Markov processes and queuing systems

Four Steps to Happiness

- Define the random variables
- Identify the joint sample space
- Determine the probability law over the sample space
- Work in the sample space to answer any question of interest
- Derive the CDF of the RV of interest working in the original sample space whose probability law you know
- Take the derivative to obtain the desired PDF

Transforms

- Z-transform:
$p_{X}^{T}(z) \equiv \sum_{x=0}^{\infty} p_{X}(x) z^{x},|z| \leq 1$, where
$p_{X}(x) \equiv P\{X=x\}, x=0,1,2, \ldots$

Nearest neighbor

- Euclidean distance:

$$
P\{X(\text { circle })=k\}=\frac{\left(\gamma \pi \cdot r^{2}\right)^{k} \cdot e^{-\gamma \cdot \pi r^{2}}}{k!}, \forall k \in \mathrm{~N}
$$

-What changes for taxicab distance?

Little's Law

- In steady state:

$$
\begin{aligned}
& \mathrm{L}=\lambda \cdot \mathrm{W} \\
& \mathrm{~L}_{\mathrm{q}}=\lambda \cdot \mathrm{W}_{\mathrm{q}} \\
& \mathrm{~W}=1 / \mu+\mathrm{W}_{\mathrm{q}} \\
& \mathrm{~L}=\mathrm{L}_{\mathrm{q}}+\lambda / \mu
\end{aligned}
$$

- Conditions?

Test exercises (1)

- Police car and accident independently and uniformly located on the perimeter of a square ($1 \times 1 \mathrm{~km}$).

Around a square

- Travel only possible around the square.

1) PDF of travel distance if the police car can make U-turns anywhere?
2) PDF of travel distance if U-turns are impossible?

Solving

1) Let us fix X_{1}. X_{2} is uniformly distributed over the sides of the square: Travel distance uniformly distributed between 0 and 2 km .
2) Idem, except that travel distance is now uniformly distributed between 0 and 4 km .

Continued...

- What if we now have four blocks around which the accident and the police car can be?

Test exercises (2)

- Consider a small factory that has 3 machines subject to breaking down (independently of each other).
- Whenever a machine breaks down, it is sent to the factory's repair shop, which has two parallel and identical repair stations. Repair is done in a FIFO order. The time needed to repair a machine at a repair station has an exponential pdf with:
$E[R]=2$ hours.
- The time until a repaired machine breaks down again has an exponential pdf with: $E[B]=9$ hours.
- Find the expected number of machines that are operating at this factory in steady state.

Small factory

- The small factory has 3 machines, therefore the total population is three. Our Birth-and-death chain has therefore only a 4 states, that is all machines can be running, one can be broken down, two can be broken down or all can be broken down.

Modeling

Solving (1)

- Steady-state equations:

$$
\begin{aligned}
& \frac{1}{3} P_{0}=\frac{1}{2} P_{1} \\
& \frac{2}{9} P_{1}=P_{2} \\
& \frac{1}{9} P_{2}=P_{3} \\
& P_{0}+P_{1}+P_{2}+P_{3}=1
\end{aligned}
$$

Solving (2)

- Therefore:

$$
\begin{aligned}
& P_{0}=\frac{243}{445} \\
& P_{1}=\frac{162}{445} \\
& P_{2}=\frac{36}{445} \\
& P_{3}=\frac{4}{445}
\end{aligned}
$$

Solving (3)

- Expected number of machines that are operating:
P\{Operating $=3-L$

$$
\begin{aligned}
=3 & -\left(0 \times P_{0}+1 \times P_{1}\right. \\
& \left.+2 \times P_{2}+3 \times P_{3}\right)
\end{aligned}
$$

≈ 2.45

