
ESD: Recitation #5




The barbershop revisited


Photo removed due to copyright restrictions. 



Infinite number of waiting seats 

•	 One barber, infinite number of chairs for 
waiting customers. 

•	 Prospective customers arrive in a Poisson 
manner at the rate of λ per hour. 

•	 It takes the barber 1/µ on average to serve a 
customer (λ = 0.9 x µ). 

•	 No prospective customer is ever lost. 
•	 What is the average number of customers?




Model


1 2 30 

λ λ λ λ 

4 … 

µ µ µ µ




Solving (1)


•	 What is the probability that N customers 
are in the barbershop? 
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Solving (2) 

• Average number of customers:
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Different service completion rate


•	 One barber, two chairs for waiting customers.

•	 Prospective customers arrive in a Poisson 

manner at the rate of λ per hour. 
•	 It takes the barber 1/µ on average to serve a

customer. The service completion rate is 
described by a second order Erlang pdf. 
Assume λ = µ. 

•	 Prospective customers finding the barbershop
full are lost forever. 

•	 What is the average number of customers? 



Model
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Arrival rate: fA(x) = λ.e- λ.x, x ≥ 0 
Service rate: fS(x) = 4.µ2.x.e-2.µ.x, x ≥ 0 



Solving (1) 

• Steady-state probabilities:
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Solving (2) 

• Calculate P0: 
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Solving (3) 

• Average number of customers:
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Additional barber


•	 Two barbers: 
–	 Adam (takes 1/µ1 on average to serve a customer) 
–	 Ben (takes 1/µ2 on average to serve a customer) 

•	 One chair for waiting customers. 
•	 Prospective customers arrive in a Poisson 

manner at the rate of λ per hour. 
•	 Prospective customers finding the barbershop

full are lost forever 



Modeling the system
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State of the system: Si,j
i: number of people being serviced by or waiting for Adam

j: number of people being serviced by Ben 



The question 

•	 Suppose λ = µ1 = µ2. 
•	 What is the probability that Ben is busy 

at a random time? 



Solving (1) 

• Steady-state probabilities:


� 

!.P
0,0

= µ
1
.P
1,0

+ µ
2
.P
0,1

(µ
1

+ !).P
1,0

= !.P
0,0

+ µ
1
.P
2,0

+ µ
2
.P
1,1

(µ
1

+ !).P
2,0

= !.P
1,0

+ µ
2
.P
2,1

(µ
1

+ µ
2
).P

2,1
= !.P

2,0
+ !.P

1,1

(µ
1

+ µ
2

+ !).P
1,1

= !.P
0,1

+ µ
1
.P
2,1

(µ
2

+ !).P
0,1

= µ
1
.P
1,1



Solving (2) 

• P{Ben busy} = P0,1 + P1,1 + P2,1


• Using: 
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• We find:
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