ESD: Recitation \#5

The barbershop revisited

Photo removed due to copyright restrictions.

Infinite number of waiting seats

- One barber, infinite number of chairs for waiting customers.
- Prospective customers arrive in a Poisson manner at the rate of λ per hour.
- It takes the barber $1 / \mu$ on average to serve a customer ($\lambda=0.9 \times \mu$).
- No prospective customer is ever lost.
- What is the average number of customers?

Model

Solving (1)

- What is the probability that N customers are in the barbershop?

$$
\begin{aligned}
& P_{1}=\frac{\lambda}{\mu} P_{0} ; P_{2}=\frac{\lambda}{\mu} P_{1} \\
& P_{N}=\left(\frac{\lambda}{\mu}\right)^{N} P_{0} \\
& \sum_{i=0}^{\infty} P_{i}=1 \Rightarrow P_{0}=\frac{1}{\sum_{k=0}^{\infty}\left(\frac{\lambda}{\mu}\right)^{k}}=\frac{1}{\sum_{k=0}^{\infty} 0.9^{k}}=\frac{1}{10}=0.1
\end{aligned}
$$

Solving (2)

- Average number of customers:

$$
\begin{aligned}
& P_{N}=0.1 \times\left(\frac{\lambda}{\mu}\right)^{N}=0.1 \times 0.9^{N} \\
& E\left[N b_{-} \text {customers }\right]=\sum_{k=0}^{\infty} k . P_{k}=0.1 \times \sum_{k=0}^{\infty} k \times 0.9^{k}=9
\end{aligned}
$$

Different service completion rate

- One barber, two chairs for waiting customers.
- Prospective customers arrive in a Poisson manner at the rate of λ per hour.
- It takes the barber $1 / \mu$ on average to serve a customer. The service completion rate is described by a second order Erlang pdf. Assume $\lambda=\mu$.
- Prospective customers finding the barbershop full are lost forever.
- What is the average number of customers?

Model

Arrival rate: $f_{A}(x)=\lambda . e^{-\lambda . x}, x \geq 0$
Service rate: $f_{S}(x)=4 \cdot \mu^{2} \cdot x \cdot e^{-2 \cdot \mu \cdot x}, x \geq 0$

Solving (1)

- Steady-state probabilities:

$$
\begin{aligned}
& \lambda \cdot P_{0}=2 \mu \cdot P_{1} \\
& (2 \mu+\lambda) \cdot P_{1}=2 \cdot \mu \cdot P_{2} \\
& (2 \mu+\lambda) \cdot P_{1}=2 \mu \cdot P_{2} \\
& (2 \mu+\lambda) \cdot P_{2}=\lambda \cdot P_{0}+2 \mu \cdot P_{3} \\
& (2 \mu+\lambda) \cdot P_{3}=\lambda \cdot P_{1}+2 \mu \cdot P_{4} \\
& (2 \mu+\lambda) \cdot P_{4}=\lambda \cdot P_{2}+2 \mu \cdot P_{5} \\
& 2 \mu \cdot P_{5}=\lambda \cdot P_{3}+2 \mu \cdot P_{6} \\
& 2 \mu \cdot P_{6}=\lambda \cdot P_{4}
\end{aligned}
$$

Solving (2)

- Calculate P_{0} :

$$
\begin{aligned}
& \sum_{k=0}^{6} P_{k}=1 \Leftrightarrow P_{0}+\frac{1}{2} P_{0}+\frac{3}{4} P_{0}+\frac{5}{8} P_{0}+\frac{11}{16} P_{0}+\frac{21}{32} P_{0}+\frac{11}{32} P_{0}=\frac{65}{16} P_{0} \\
& \sum_{k=0}^{6} P_{k}=1 \Leftrightarrow P_{0}=\frac{16}{65}
\end{aligned}
$$

Solving (3)

- Average number of customers:

$$
\begin{aligned}
& E\left[N b_{-} \text {customers }\right]=0 \times \frac{16}{65}+1 \times\left(\frac{8}{65}+\frac{12}{65}\right) \\
& +2 \times\left(\frac{2}{13}+\frac{11}{65}\right)+3 \times\left(\frac{21}{130}+\frac{11}{130}\right) \\
& E\left[N b_{-} \text {customers }\right]=\frac{22}{13} \approx 1.692
\end{aligned}
$$

Additional barber

- Two barbers:
- Adam (takes $1 / \mu_{1}$ on average to serve a customer)
- Ben (takes $1 / \mu_{2}$ on average to serve a customer)
- One chair for waiting customers.
- Prospective customers arrive in a Poisson manner at the rate of λ per hour.
- Prospective customers finding the barbershop full are lost forever

Modeling the system

State of the system: $\mathrm{S}_{\mathrm{i}, \mathrm{j}}$
i: number of people being serviced by or waiting for Adam
j: number of people being serviced by Ben

The question

- Suppose $\lambda=\mu_{1}=\mu_{2}$.
- What is the probability that Ben is busy at a random time?

Solving (1)

- Steady-state probabilities:

$$
\begin{aligned}
& \lambda \cdot P_{0,0}=\mu_{1} \cdot P_{1,0}+\mu_{2} \cdot P_{0,1} \\
& \left(\mu_{1}+\lambda\right) \cdot P_{1,0}=\lambda \cdot P_{0,0}+\mu_{1} \cdot P_{2,0}+\mu_{2} \cdot P_{1,1} \\
& \left(\mu_{1}+\lambda\right) \cdot P_{2,0}=\lambda \cdot P_{1,0}+\mu_{2} \cdot P_{2,1} \\
& \left(\mu_{1}+\mu_{2}\right) \cdot P_{2,1}=\lambda \cdot P_{2,0}+\lambda \cdot P_{1,1} \\
& \left(\mu_{1}+\mu_{2}+\lambda\right) \cdot P_{1,1}=\lambda \cdot P_{0,1}+\mu_{1} \cdot P_{2,1} \\
& \left(\mu_{2}+\lambda\right) \cdot P_{0,1}=\mu_{1} \cdot P_{1,1}
\end{aligned}
$$

Solving (2)

- $P\{$ Ben busy $\}=P_{0,1}+P_{1,1}+P_{2,1}$
- Using:

$$
P_{0,0}+P_{1,0}+P_{2,0}+P_{2,1}+P_{1,1}+P_{0,1}=1
$$

- We find:

$$
P\{\text { Ben_busy }\}=\frac{8}{129}+\frac{4}{43}+\frac{22}{129}=\frac{42}{129} \approx 0.326
$$

