ESD: Recitation \#4

Birthday problem

An approximate method

- Bernoulli trials
- Number of trials to compare birthdays of all people in the class:

$$
N=\frac{n!}{(n-2)!2!}=\frac{n!}{2(n-2)!}
$$

- Probability that nobody has the same birthday than someone else:

$$
P_{0}=\binom{N}{0}\left(\frac{1}{365}\right)^{0}\left(\frac{364}{365}\right)^{N}=\left(\frac{364}{365}\right)^{N}=\left(\frac{364}{365}\right)^{\frac{n!}{2(n-2)!}}
$$

The exact solution

- Probability that nobody has the same birthday than anybody else:

$$
P_{0}=\prod_{i=0}^{n-1}\left(1-\frac{i}{365}\right)=\frac{365!}{365^{n}(365-n)!}
$$

What was the average travel distance between two random points in Budapest in the 1850s?

Budapest = Buda + Pest

Photo removed due to copyright restrictions.
The Danube River through Budapest, showing the two shores.

Only one bridge: Széchenyi Lánchid (Chain bridge)

Modeling

Within each city

- In Buda:

$$
P_{B-B}=\left(\frac{w_{B} \cdot l_{B} \cdot \lambda_{B}}{w_{B} \cdot l_{B} \cdot \lambda_{B}+w_{P} \cdot l_{P} \cdot \lambda_{P}}\right)^{2} \quad \overline{D_{B}}=\frac{1}{3}\left(w_{B}+l_{B}\right)
$$

- In Pest:

$$
P_{P-P}=\left(\frac{w_{P} \cdot l_{P} \cdot \lambda_{P}}{w_{B} \cdot l_{B} \cdot \lambda_{B}+w_{P} \cdot l_{P} \cdot \lambda_{P}}\right)^{2} \quad \overline{D_{P}}=\frac{1}{3}\left(w_{P}+l_{P}\right)
$$

Between the two cities

- 4 cases:

Between (1) and (3)

- Probability:
$P_{(1)-(3)}=2 \frac{w_{P} \cdot l_{P} \cdot \lambda_{P} \cdot w_{B} \cdot l_{B} \cdot \lambda_{B}}{\left(w_{B} \cdot l_{B} \cdot \lambda_{B}+w_{P} \cdot l_{P} \cdot \lambda_{P}\right)^{2}} \times \frac{u \cdot v}{l_{P} \cdot l_{B}}$
- Average Distance:

$$
\overline{D_{(1)-(3)}}=\frac{1}{2}\left(w_{B}+v\right)+\frac{1}{2}\left(w_{P}+u\right)+202
$$

Between (1) and (4)

- Probability:

$$
P_{(1)-(4)}=2 \frac{w_{P} \cdot l_{P} \cdot \lambda_{P} \cdot w_{B} \cdot l_{B} \cdot \lambda_{B}}{\left(w_{B} \cdot l_{B} \cdot \lambda_{B}+w_{P} \cdot l_{P} \cdot \lambda_{P}\right)^{2}} \times \frac{u \cdot\left(l_{B}-v\right)}{l_{P} \cdot l_{B}}
$$

- Average Distance:

$$
\overline{D_{(1)-(4)}}=\frac{1}{2}\left(w_{P}+u\right)+\frac{1}{2}\left(w_{B}+\left(l_{B}-v\right)\right)+202
$$

And continue...

- Between (2) and (3)
- Between (2) and (4)
- Get the final answer...

More complications

- There is currently ten bridges on the Danube.
- How does average traveling distance change if we build another one?

Bertrand's Paradox

Joseph Louis François Bertrand
(1822-1900)

Wrote Calcul des
probabilités in 1888.

The question

- Consider an equilateral triangle inscribed in a circle. Suppose a cord of the circle is chosen at random.
- What is the probability that the chord is longer than a side of the triangle?

Random endpoints

Figure by MIT OCW.

Random radius

Figure by MIT OCW.

Random midpoints

Figure by MIT OCW.

Barbershop

- One barber, two chairs for waiting customers.
- Prospective customers arrive in a Poisson manner at the rate of λ per hour.
- It takes the barber $1 / \mu$ on average to serve a customer.
- Prospective customers finding the barbershop full are lost forever.
- What is the average number of customers?

Model

$$
\lambda=2 . \mu
$$

Solving (1)

- What is the probability that N customers are in the barbershop?

$$
\begin{aligned}
& P_{1}=\frac{\lambda}{\mu} P_{0} ; P_{2}=\frac{\lambda}{\mu} P_{1} \\
& P_{N}=\left(\frac{\lambda}{\mu}\right)^{N} P_{0} \\
& \sum_{i=0}^{3} P_{i}=1 \Rightarrow P_{0}=\frac{1-\frac{\lambda}{\mu}}{1-\left(\frac{\lambda}{\mu}\right)^{3+1}}
\end{aligned}
$$

Solving (2)

- Average number of customers:

$$
\begin{aligned}
& P_{N}=\left(\frac{\lambda}{\mu}\right)^{3} \frac{1-\frac{\lambda}{\mu}}{1-\left(\frac{\lambda}{\mu}\right)^{3+1}}=\frac{2^{3}}{2^{4}-1} \\
& E[\text { Nb_customers }]=\sum_{i=0}^{3} i . P_{i}=\frac{34}{15} \approx 2.2667
\end{aligned}
$$

