ESD: Recitation \#2

Definitions: 1. Expectation

- Expectation (or population mean):

E[X] or μ

$$
\mathrm{E}(X)=\sum_{i} p_{i} x_{i}
$$

- Linearity: $\mathrm{E}[\mathrm{aX}+\mathrm{b}]=\mathrm{a} . \mathrm{E}[\mathrm{X}]+\mathrm{b}$
- Non-multiplicativity: E[X.Y] = E[X].E[Y] iff X and Y are independently distributed

Definitions: 2. Median

- Median: c
- The median of a probability distribution is the value of c that minimizes

$$
E(|X-c|)
$$

- The median is not necessarily unique.

Definitions: 3. Variance

- Variance: $\operatorname{var}[\mathrm{X}]$ or σ^{2}

$$
\begin{aligned}
& \left.\operatorname{var}[X]=E\left[(X-\mu)^{2}\right]=E(X-E[X])^{2}\right] \\
& \operatorname{var}[X]=E\left[X^{2}\right]-(E[X])^{2}
\end{aligned}
$$

- Non-linearity:
$\operatorname{var}(a X+b Y)=a^{2} \operatorname{var}(X)+b^{2} \operatorname{var}(Y)+2 a b \operatorname{cov}(X, Y)$.

The Democrates in the US Senate

- 106th Congress: 45
- 107th Congress: 50
- 108th Congress: 48
- 109th Congress: 45
- 110th Congress: 51

Return to the geometric distribution

- Calculating the expectation:

$$
\begin{aligned}
& E[x]=\sum_{n=0}^{\infty} n p(1-p)^{n}=? \\
& \sum_{n=0}^{m} x^{n}=\frac{1-x^{n+1}}{1-x} \\
& \frac{d}{d x}\left(\sum_{n=0}^{m} x^{n}\right)=\sum_{n=0}^{m} n \cdot x^{n-1}=\frac{-(n+1) \cdot x^{n}(1-x)+\left(1-x^{n+1}\right) \cdot 1}{(1-x)^{2}}
\end{aligned}
$$

- For the variance calculation, cf.:
http://www.win.tue.nl/~rnunez/2DI30/NoteOnGeometricDistributi on/distributions.pdf

z-Transform

z-transform of $p_{x}(x)$:

$$
p_{X}^{T}(z) \equiv E\left[z^{X}\right]=\sum_{x=0}^{\infty} z^{x} p_{X}(x)
$$

Why is it useful? You can use it to determine the expectation and variance of probability distributions:

$$
\begin{aligned}
& E[X]=\left[\frac{d p_{X}^{T}(z)}{d z}\right]_{z=1} \\
& E\left[X^{2}\right]=\left[\frac{d^{2} p_{X}^{T}(z)}{d z^{2}}\right]_{z=1}+\left[\frac{d p_{X}^{T}(z)}{d z}\right]_{z=1}
\end{aligned}
$$

Z-Transform (cont'd)

- For the most common z-transforms, have a look at this website:
http://www.swarthmore.edu/NatSci/echeeve1/Ref/LPSA /LaplaceZTable/LaplaceZFuncTable.html

Buffon's Needle

Georges-Louis Leclerc, Comte de Buffon (1707-1788)

Probability treatise
Sur le jeu de franc-carreau

Source: Wikipedia

The Experiment

$\mathrm{l} \leq \mathrm{d}$

Random variables:
$\phi=$ angle between
needle and stripe interface

Figure by MIT OCW.
$\mathrm{y}=$ distance between needle middle and nearest stripe interface

Joint sample space

Joint probability distribution

- Determine $\mathrm{f}_{\mathrm{Y}, \phi}(\mathrm{y}, \phi)$
- $f_{Y}(y)$ and $f_{\phi}(\phi)$ independent, uniformly distributed
- $f_{Y}(y)=$ constant $=2 / d$
- $f_{\phi}(\phi)=$ constant $=1 / \pi$
- $f_{Y, \phi}(y, \phi)=f_{Y}(y) \times f_{\phi}(\phi)=2 / \pi d$

Working in the joint sample space

- Needle crosses stripe interface <=>

$$
[y-(\mathrm{l} / 2) \sin \phi]<0 \text { or } y<(I / 2) \sin \phi
$$

$$
\left.P=\int_{0}^{\phi} \int_{0}^{\frac{L}{2} \sin \phi} \frac{2}{\pi d} d y\right) d \phi=\frac{l}{\pi d} \int_{0}^{\phi} \sin \phi . d \phi=\frac{2 l}{\pi d}
$$

