ESD. 86 - Recitation 1

The Bernoulli Distribution (1)

- Let's have an experiment that can only have two outcomes: "success" (labeled $\mathrm{n}=1$), with probability p ; and "failure" (labeled $\mathrm{n}=0$), with probability q .
- It therefore has the following probability distribution:

$$
\begin{aligned}
& P(n)=\left\{\begin{array}{c}
1-p,_{-} \text {for_ } n=0 \\
p,_{-} \text {for_ } n=1
\end{array}\right. \\
& P(n)=p^{n}(1-p)^{1-n}
\end{aligned}
$$

The Bernoulli Distribution (2)

- The Bernoulli distribution function is:

$$
D(n)=\left\{\begin{array}{c}
1-p, r_{-} \text {for } n=0 \\
1, f_{-} \text {for } n=1
\end{array}\right.
$$

- Mean: $\mu=p$
- Variance: $\sigma^{2}=p(1-p)$

The Binomial Distribution (1)

- Start with an experiment that can have only two outcomes: "success" and "failure" or $\{0,1\}$ with probabilities p and q , respectively.
- Consider N "trials," i.e., repetitions of this experiment with constant q (Bernoulli trials)
- Define a new DRV: $X=$ number of 1's in N trials
- Sample space of $\mathrm{X}:\{0,1,2, \ldots, \mathrm{~N}\}$
- What is the probability that there will be k 1 's (failures) in N trials?

The Binomial Distribution (2)

$$
\operatorname{Pr}[X=k]=\binom{N}{k} q^{k}(1-q)^{N-k}
$$

- This is the probability mass function of the Binomial Distribution.
- It is the probability of exactly k failures in N demands.
- The binomial coefficient is:

$$
\binom{N}{k}=\frac{N!}{k!(N-k)!}
$$

The Binomial Distribution (3)

- Mean number of failures: q.N
- Variance: q. (1-q).N
- Normalization: $\sum_{k=0}^{N}\binom{N}{k} q^{k}(1-q)^{N-k}=1$
- $\mathrm{P}[$ at most m failures]:

$$
\sum_{k=0}^{m}\binom{N}{k} q^{k}(1-q)^{N-k}=F(m)
$$

The Geometric Distribution (1)

- The Geometric distribution is a discrete distribution for $\mathrm{n}=0,1,2, \ldots$ having the following probability function:

$$
\begin{aligned}
& P(n)=p(1-p)^{n} \\
& P(n)=p q^{n}
\end{aligned}
$$

where $0<p<1$, and $q=1-p$

- Its distribution function is:

$$
D(n)=\sum_{k=0}^{n} P(k)=1-q^{n+1}
$$

The Geometric Distribution (2)

- The geometric distribution is the only discrete memoryless random distribution. It is the discrete distribution of the exponential distribution.
- Normalization:

$$
\sum_{n=0}^{\infty} P(n)=\sum_{n=0}^{\infty} q^{n} p=p \sum_{n=0}^{\infty} q^{n}=\frac{p}{1-q}=\frac{p}{p}=1
$$

- Mean: $\mu=\frac{1-p}{p}$
- Variance: $\sigma^{2}=\frac{1-p}{p^{2}}$

Acknowledgements

- Wolfram's Mathworld: http://mathworld.wolfram.com/

