ESD.86. Markov Processes and their

Application to Queueing II

Richard C. Larson
March 7, 2007

Outline

- Little's Law, one more time
- PASTA treat
- Markov Birth and Death Queueing Systems

Figure by MIT OCW.

"System" is General

- Our results apply to entire queue system, queue plus service facility
- But they could apply to queue only!

- Or to service facility only!

$$
\begin{aligned}
& L_{S F}=\lambda W_{S F}=\lambda / \mu \\
& 1 / \mu=\text { mean service time }
\end{aligned}
$$

All of this means, "You buy one, you get the other 3 for free!"

Markov Queues

Markov here means, "No Memory"

Time: t
Time: $t+\Delta t$
Probabilities of transitions for birth-and-death model in time Δt.

Balance of Flow Equations

$$
\begin{aligned}
& \lambda_{0} P_{0}=\mu_{1} P_{1} \\
& \left(\lambda_{n}+\mu_{n}\right) P_{n}=\lambda_{n-1} P_{n-1}+\mu_{n+1} P_{n+1} \text { for } n=1,2,3, \ldots
\end{aligned}
$$

Another way to balance the flow:

Source: Larson and Odoni, Urban Operations Research

$$
\lambda_{n} P_{n}=\mu_{n+1} P_{n+1} n=0,1,2, \ldots
$$

$$
\begin{aligned}
& \lambda_{0} P_{0}=\mu_{1} P_{1} \quad P_{1}=\left(\lambda_{0} / \mu_{1}\right) P_{0} \\
& \lambda_{1} P_{1}=\mu_{2} P_{2} \ldots \\
& P_{2}=\left(\lambda_{1} / \mu_{2}\right) P_{1}=\left(\lambda_{0} / \mu_{1}\right)\left(\lambda_{1} / \mu_{2}\right) P_{0}=\left(\lambda_{0} \lambda_{1} /\left[\mu_{1} \mu_{2}\right]\right) P_{0} \\
& P_{n+1}=\left(\lambda_{n} / \mu_{n+1}\right) P_{n}=\left(\lambda_{0} \lambda_{1} \ldots \lambda_{n} /\left[\mu_{\mu} \mu_{2} \ldots, \mu_{n+1}\right]\right) P_{0} \\
& \lambda_{n} P_{n}=\mu_{n+1} P_{n+1} \quad \text { Telescoping! }
\end{aligned}
$$

Source: Larson and Odoni, Urban Operations Research

$$
\lambda_{n} P_{n}=\mu_{n+1} P_{n+1} n=0,1,2, \ldots
$$

$\lambda_{0} P_{0}=\mu_{1} P_{1} \quad P_{1}=\left(\lambda_{0} / \mu_{1}\right) P_{0}$
 $$
\lambda_{1} P_{1}=\mu_{2} P_{2} \ldots
$$
 $$
P_{2}=\left(\lambda_{1} / \mu_{2}\right) P_{1}=\left(\lambda_{0} / \mu_{1}\right)\left(\lambda_{1} / \mu_{2}\right) P_{0}=\left(\lambda_{0} \lambda_{1} /\left[\mu_{1} \mu_{2}\right]\right) P_{0}
$$
 $$
P_{n+1}=\left(\lambda_{n} / \mu_{n+1}\right) P_{n}=\left(\lambda_{0} \lambda_{1} \ldots \lambda_{n} /\left[\mu_{\mu} \mu_{2} . . \mu_{n+1}\right)\right) P_{0}
$$
 Telescoping!

$$
P_{0}+P_{1}+P_{2}+\ldots=\sum_{n=0}^{\infty} P_{n}=1
$$

$P_{0}+\left(\lambda_{0} / \mu_{1}\right) P_{0}+\left(\lambda_{0} \lambda_{1} /\left[\mu_{1} \mu_{2}\right]\right) P_{0}+\ldots+\left(\lambda_{0} \lambda_{1} \ldots \lambda_{n} /\left[\mu_{\mu} \mu_{2} \ldots \mu_{n+1}\right]\right) P_{0}+\ldots=1$ $P_{0}\left\{1+\left(\lambda_{0} / \mu_{1}\right)+\left(\lambda_{0} \lambda_{1} /\left[\mu_{1} \mu_{2}\right]\right)+\ldots+\left(\lambda_{0} \lambda_{1} \ldots \lambda_{n} /\left[\mu_{1} \mu_{2} \ldots \mu_{n+1}\right]\right)+\ldots\right\}=1$
Now, you easily solve for P_{0} and then for All other P_{n} 's.

PASTA: Poisson Arrivals See Time Averages

Time to Buckle your Seatbelts!

The M/M/1 Queue

State-transition diagram for a $M / M / 1$ queueing system with infinite system
capacity.

$$
\begin{aligned}
& P_{0}+\left(\lambda_{0} / \mu_{1}\right) P_{0}+\left(\lambda_{0} \lambda_{1} /\left[\mu_{1} \mu_{2}\right]\right) P_{0}+\ldots+\left(\lambda_{0} \lambda_{1} \ldots \lambda_{n} /\left[\mu_{\mu} \mu_{2} \ldots \mu_{n+1}\right]\right) P_{0}+\ldots=1 \\
& P_{0}\left\{1+\left(\lambda_{0} / \mu_{1}\right)+\left(\lambda_{0} \lambda_{1} /\left[\mu_{1} \mu_{2}\right]\right)+\ldots+\left(\lambda_{0} \lambda_{1} \ldots \lambda_{n} /\left[\mu_{1} \mu_{2} \ldots \mu_{n+1}\right]\right)+\ldots\right\}=1 \\
& P_{0}\left\{1+(\lambda / \mu)+\left(\lambda^{2} / \mu^{2}\right)+\ldots+\left(\lambda^{n+1} / \mu^{n+1}\right)+\ldots\right\}=1
\end{aligned}
$$

$\left\{1+(\lambda / \mu)+\left(\lambda^{2} / \mu^{2}\right)+\ldots+\left(\lambda^{n+1} / \mu^{n+1}\right)+\ldots\right\}=1 /[1-(\lambda / \mu)]$
For $\lambda / \mu<1$.

The M/M/1 Queue

State-transition diagram for a $M / M / 1$ queueing system with infinite system
capacity.

Source: Larson and Odoni, Urban Operations Research

$$
\begin{aligned}
& P_{0}=1-\lambda / \mu \text { for } \lambda / \mu<1 . \\
& P_{n}=(\lambda / \mu)^{n} P_{0}=(\lambda / \mu)^{n}(1-\lambda / \mu) \text { for } n=1,2,3, \ldots
\end{aligned}
$$

$P_{0}\left\{1+(\lambda / \mu)+\left(\lambda^{2} / \mu^{2}\right)+\ldots+\left(\lambda^{n+1} / \mu^{n+1}\right)+\ldots\right\}=1$
$\left\{1+(\lambda / \mu)+\left(\lambda^{2} / \mu^{2}\right)+\ldots+\left(\lambda^{n+1} / \mu^{n+1}\right)+\ldots\right\}=1 /[1-(\lambda / \mu)]$
For $\lambda / \mu<1$.

The M/M/1 Queue

$$
\begin{aligned}
& P^{T}(z) \equiv \sum_{n=0}^{\infty} P_{n} z^{n}=\sum_{n=0}^{\infty}(\lambda / \mu)^{n}(1-\lambda / \mu) z^{n}=\frac{1-\rho}{1-\rho z} \\
& \left.\left.\frac{d}{d z} P^{T}(z)\right\rfloor_{z=1} \equiv \sum_{n=0}^{\infty} n P_{n}=L=\frac{-(1-\rho)(-\rho)}{(1-\rho z)^{2}}\right]=\frac{\rho}{1-\rho} \text { for } \rho<1
\end{aligned}
$$

$$
\begin{aligned}
& P_{0}=1-\lambda / \mu \text { for } \lambda / \mu<1 \\
& P_{n}=(\lambda / \mu)^{n} P_{0}=(\lambda / \mu)^{n}(1-\lambda / \mu) \text { for } n=1,2,3, \ldots
\end{aligned}
$$

$$
L=\lambda W=\rho /(1-\rho)
$$

$$
\text { implies } W=(1 / \lambda) \rho /(1-\rho)=(1 / \mu) /(1-\rho)
$$

$$
L_{q}=\lambda W_{q} \text { etc. }
$$

Mean Wait vs. Rho

More on M/M/1 Queue

Let $w(t)=$ pdf for time in the system (including queue and service)

Assume First-Come, First-Served (FCFS) Queue Discipline

$$
w(t)=\sum_{k=0}^{\infty} w(t \mid k) P_{k}=\sum_{k=0}^{\infty} \frac{\mu^{k+1} t^{k} e^{-\mu t}}{k!} \rho^{k}(1-\rho)
$$

Exercise: Do the same for Time in queue

$$
w(t)=\mu e^{-\mu t}(1-\rho) \sum_{k=0} \frac{(\mu \mu \rho)}{k!}=\mu(1-\rho) e^{-\mu t} e^{-\mu \rho t}
$$

$$
w(t)=\mu(1-\rho) e^{-\mu(1-\rho) t} \quad t \geq 0
$$

Blackboard Modeling

- 3 server zero line capacity
- 3 server capacity for 4 in queue
-Same as above, but 50\% of queuers balk due to having to wait in queue
- Single server who slows down to half service rate when nobody is in queue
- More??

About the 'cut'’ between states to write the balance of flow equations...

Optional Exercise:

Is it "'better’’ to enter a single server queue with service rate μ
or a 2-server queue each with rate $\mu / 2$?

Can someone draw one or both of the state-rate-transition diagrams?

Then what do you do?

Final Example: Single Server, Discouraged Arrivals

State-Rate-Transition Diagram, Discouraged Arrivals
$P_{k}=\frac{1}{k!}\left(\frac{\lambda}{\mu}\right)^{k} P_{0}$
$P_{0}=\left[1+\left(\frac{\lambda}{\mu}\right)+\frac{1}{2!}\left(\frac{\lambda}{\mu}\right)^{2}+\frac{1}{3!}\left(\frac{\lambda}{\mu}\right)^{3}+\ldots+\frac{1}{k!}\left(\frac{\lambda}{\mu}\right)^{k}+\ldots\right]^{-1}$
$P_{0}=\left(e^{\lambda / \mu}\right)^{-1}=e^{-\lambda / \mu}$

$$
P_{0}=\left(e^{\lambda / \mu}\right)^{-1}=e^{-\lambda / \mu}>0
$$

$\rho=$ utilization factor $=1-P_{0}=1-e^{-\lambda / \mu}<1$.
$P_{k}=\frac{(\lambda / \mu)^{k}}{k!} e^{-\lambda / \mu}, \quad k=0,1,2, \ldots$ Poisson Distribution!
$L=$ time - average number in system $=\lambda / \mu$ How?
$L=\lambda_{A} W \quad$ Little's Law, where
$\lambda_{A} \equiv$ average rate of accepted arrivals into system

Apply Little's Law to Service Facility

$\rho=\lambda_{A}$ (average service time)
$\rho=$ average number in service facility $=\lambda_{A} / \mu$
$\lambda_{A}=\mu \rho=\mu\left(1-e^{-\lambda / \mu}\right)$
$W=\frac{L}{\lambda_{A}}=\frac{\lambda / \mu}{\mu\left(1-e^{-\lambda / \mu}\right)}=\frac{\lambda}{\mu^{2}\left(1-e^{-\lambda / \mu}\right)}$

