ESD. 86 Spatial Models

Richard C. Larson

February 28, 2007

Outline

- Min, Max
- Ratio of Urban Distance to Airplane Dist.
-Spatial Poisson Processes
-Facility Location

Suppose X_{1} and X_{2} are i.i.d. uniformly distributed over [0, 1]. They could, for instance, be the locations of 2 police cars. We seek to derive the joint pdf of Y and Z, where

$$
\begin{aligned}
& Y=\operatorname{Min}\left(X_{1}, X_{2}\right) \\
& Z=\operatorname{Max}\left(X_{1}, X_{2}\right)
\end{aligned}
$$

That is, we seek

$$
f_{Y, z}(y, z) d y d z=P\{y<Y<y+d y, z<Z<z+d z\}
$$

Four Steps to Happiness

1. Define the random variables
$Y=\operatorname{Min}\left(X_{1}, X_{2}\right)$
$Z=\operatorname{Max}\left(X_{1}, X_{2}\right)$
2. Define the joint sample space: Unit square in positive quadrant
3. Identify the probability measure over the joint sample space: Uniform.
4. Work within the sample space to answer any questions of interest.

Work within the sample space

Work within the sample space

Height of pdf = 2

What do we do if we do not have the simple square symmetry of this problem?

What do we do if the pdf is not uniform?

$$
f_{Y, Z}(y, z)=\frac{\partial^{2}}{\partial y \partial z} F_{Y, Z}(y, z)=\frac{\partial}{\partial y}(2 y)=2,0 \leq y \leq z \leq 1
$$

Ratio of Manhattan to Euclidean Distance Metrics

©1. Define R.V.'s

$$
\gg D_{1}=\left|X_{1}-X_{2}\right|+\left|Y_{1}-Y_{2}\right|
$$

$$
» D_{2}=\sqrt{\left(X_{1}-X_{2}\right)^{2}+\left(Y_{1}-Y_{2}\right)^{2}}
$$

$$
» \text { Ratio }=\mathrm{R}=\mathrm{D}_{1} / \mathrm{D}_{2}
$$

$\Psi=$ angle of directions of travel wrt straight line connecting $\left(\mathrm{X}_{1}, \mathrm{Y}_{1}\right) \&\left(\mathrm{X}_{2}, \mathrm{Y}_{2}\right)$

Directions of Travel

Directions of Travel

Directions of Travel
$(R \mid \Psi)=\cos \Psi+\sin \Psi=2^{1 / 2} \cos (\Psi-\pi / 4)$
2. Identify Sample Space

3. Probability Law over Sample Space: Invoke isotropy implying uniformity of angle

4. Find CDF

$$
\begin{aligned}
* F_{R}(r) & =P\{R<r\}=P\left\{2^{1 / 2} \cos (\Psi-\pi / 4)<r\right\} \\
* F_{R}(r) & =P\{R<r\}=P\left\{\cos (\Psi-\pi / 4)<r / 2^{1 / 2}\right\}
\end{aligned}
$$

And finally...

\bullet After all the computing is done, we find:
$>F_{R}(r)=1-(4 / \pi) \cos ^{-1}\left(r / 2^{1 / 2}\right), \quad 1<r<2^{1 / 2}$
$\diamond f_{R}(r)=d\left[F_{R}(r)\right] / d r=(4 / \pi)\left\{1 /\left(2-r^{2}\right)^{1 / 2}\right\}$

- Median R = 1.306
- $E[R]=4 / \pi=1.273$
$\bullet \sigma_{R} / E[R]=0.098$, implies very robust

Spatial
 Poisson Processes

Courtesy of Andy Long. Used with permission.

Spatial Poisson Processes

- Entities distributed in space (Examples?)
\bullet Follow postulates of the (time) Poisson process
- $\lambda d t=$ Probability of a Poisson event in dt
- History not relevant
- What happens in disjoint time intervals is independent, one from the other
- The probability of a two or more Possion events in dt is second order in dt and can be ignored
- Let's fill in the spatial analogue.....

Set S has area $A(S)$.
Poisson intensity is γ
Poisson entities/(unit area).
$X(S)$ is a random variable
$X(S)=$ number of Poisson entities in S

$P\{X(S)=k\}=\frac{(\gamma A(S))^{k}}{k!} e^{-\gamma A(S)}, k=0,1,2, \ldots$

Nearest Neighbors: Euclidean

Define $D_{2}=$ distance from a random point to nearest Poisson entity
Want to derive $f_{D_{2}}(r)$.
Happiness:

$$
\begin{aligned}
& F_{D_{2}}(r) \equiv P\left\{D_{2} \leq r\right\}=1-P\left\{D_{2}>r\right\} \\
& F_{D_{2}}(r)=1-\operatorname{Prob}\{\text { no Poisson entities in circle of radius } r\} \\
& F_{D_{2}}(r)=1-e^{-\gamma \pi r^{2}} r \geq 0 \\
& f_{D_{2}}(r)=\frac{d}{d r} F_{D_{2}}(r)=2 r \gamma \pi e^{-\gamma \pi r^{2}} \quad r \geq 0
\end{aligned}
$$

Rayleigh pdf with parameter $\sqrt{2 \gamma \pi}$

Nearest Neighbors: Euclidean

Define $D_{2}=$ distance from a random point to nearest Poisson entity
Want to derive $f_{\mathrm{D}_{2}}(r)$.

$$
\begin{aligned}
& E\left[D_{2}\right]=(1 / 2) \sqrt{\frac{1}{\gamma}} \text { "Square Root Law" } \\
& \sigma_{D_{2}}^{2}=(2-\pi / 2) \frac{1}{2 \pi \gamma}
\end{aligned}
$$

$$
f_{D_{2}}(r)=\frac{d}{d r} F_{D_{2}}(r)=2 r \gamma \pi e^{-\gamma / \pi r^{2}} \quad r \geq 0
$$

Rayleigh pdf with parameter $\sqrt{2 \gamma \pi}$

Nearest Neighbor: Taxi Metric

$$
F_{D_{1}}(r) \equiv P\left\{D_{1} \leq r\right\}
$$

$F_{D_{1}}(r)=1-\operatorname{Pr}\{$ no Poisson entities in diamond $\}$

What Have We Learned?

- Within a spatial context, how to use the Four Steps to Happiness to derive joint distributions
- Within a spatial context, how to derive a difficult distribution involving geometry
- Spatial Poisson Processes, with nearest neighbor applications

