
Concept Test

• A bracket holds a component as shown.  
The dimensions are independent
random variables with standard 
deviations as noted.  Approximately 
what is the standard deviation of the 
gap?
A) 0.011”
B) 0.01”
C) 0.001”
D) not enough info
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Concept Test

• A bracket holds a component as shown.  The 
dimensions are strongly correlated random 
variables with standard deviations as noted.  
Approximately what is the standard deviation 
of the gap?

A) 0.011”
B) 0.01”
C) 0.009”
D) not enough info

"001.0=σ
"01.0=σ

gap



Design of Computer Experiments
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Classification of Models

Physical
or Iconic Analog

Mathematical
or Symbolic
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Mathematical Models Are
Rapidly Growing in Power

• Moore’s Law – density ↑ 2X / 18 months
• Better algorithms being developed

Source: NSF



Mathematical Models
are Becoming Easier to Use

• A wide range of models are available
– Finite Element Analysis
– Computational fluid dynamics
– Electronics simulations
– Kinematics
– Discrete event simulation

• Sophisticated visualization & animation make 
results easier to communicate

• Many tedious tasks are becoming automated 
(e.g., mesh generation and refinement)



Computational Complexity and 
Moore’s Law

• Consider a problem that requires 3n flops
• World’s fastest computer ~ 36 Teraflops/sec 
• In a week, you can solve a problem where

n=log(60*60*24*7*36*1012)/log(3)=40
• If Moore’s Law continues for 10 more years

n=log(210/1.5*60*60*24*7*36*1012)/log(3)=44
• We will probably not reach n=60 in my lifetime



Outline
• Motivation & context
• Techniques for “computer experiments”

– Monte Carlo
– Importance sampling
– Latin hypercube sampling
– Hammersley sequence sampling
– Quadrature and cubature

• Some cautions



Need for Computer Experiments
• There are properties of engineering systems we 

want to affect via our design / policy
• Let's call these properties a function y(x) where x

is a vector random variables 
• Often y is a estimated by a computer simulation 

of a system
• We may want to know some things such as 

E(y(x)) or σ(y(x))
• We often want to improve upon those same 

things
• This is deceptively complex 



Expectation of a Function

x

y(x)

E(x)

y(E(x))

E(y(x))

S

fx(x)fy(y(x))

E(y(x))- y(E(x)) 

E(y(x))≠ y(E(x))



Resource Demands of System Design

• The resources 
for system 
design typically 
scale as the 
product of the 
iterations in the 
optimization and 
sampling loops

Optimizer
Initial ValuesOptimal Design

Objective Function 
&

Constraints

Uncertain 
Variables

Stochastic 
Modeler

Model

SAMPLING 
LOOP

Decision 
Variables

Probabilistic 
Objective Function

& Constrains

Adapted from Diwekar U.M., 2003, “A novel sampling approach to combinatorial optimization under 
uncertainty” Computational Optimization and Applications 24 (2-3): 335-371.



Outline
• Motivation & context
• Techniques for “computer experiments”

– Monte Carlo
– Importance sampling
– Latin hypercube sampling
– Hammersley sequence sampling
– Quadrature and cubature

• Some cautions



Monte Carlo Method

• Let's say there is a function y(x) where x is a 
vector random variables 

• Create samples x(i)

• Compute corresponding values y(x(i))
• Study the population to obtain estimates and 

make inferences
– Mean of y(x(i)) is an unbiased estimate of E(y(x)) 
– Stdev of y(x(i)) is an unbiased estimate of σ(y(x))
– Histogram of y(x(i)) approaches the pdf of y(x)

Fishman, George S., 1996, Monte Carlo: Concepts, Algorithms, and Applications, Springer.



Example: A Chemical Process

• Objective is to generate chemical species B at 
a rate of 60 mol/min 
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Technique for Off-Line Quality Control”, Technometrics (39 (3) 308-319.
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Monte Carlo Simulations
What are They Good at?

• Above formulae apply regardless of dimension
• So, Monte Carlo is good for:

– Rough approximations or
– Simulations that run quickly
– Even if the system has many random variables

Accuracy N∝ 1 N #Trials≡

Fishman, George S., 1996, Monte Carlo: Concepts, Algorithms, and Applications, Springer.



Monte Carlo vs Importance Sampling
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Importance Sampling Example

X1

X2

The variables X1and X2 are uniformly distributed within the 
indicated rectangle. 

The physics of the 
problem suggests that 
the failure mode 
boundary is more likely 
somewhere in the right 
hand region.

Sample only on the right 
but weight them to 
correct for this.

failure
correct 

operation
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Sampling Techniques for Computer 
Experiments

Random 
Sampling

Stratified 
Sampling

Latin Hypercube 
Sampling

clump
gap



Latin Hypercube Sampling

100 Monte 
Carlo 

Samples

100 Latin 
Hypercube 
Samples

McKay, Beckman, and Conover, [1979, Technometrics] proved that LHS 
converges more quickly than MCS assuming monotonicity of the response.



Hammersley Sequence Sampling
• A sampling scheme design for low “discrepancy”
• Demonstrated to converge to 1% accuracy 3 to 40 times 

more quickly than LHS  [Kalagnanam and Diwekar, 1997]

   

Monte Carlo Latin Hypercube Hammersley



Five-point Gaussian Quadrature Integration
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response for the family of all 8th order polynomials



Cubature
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Sampling pattern for d=9 
projected into a plane 

d2+3d+3=111

Integrates exactly all Gaussian weighted 
multivariate polynomials of degree 5 or less.
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Used recursively to estimate transmitted 
variance, it’s exact up to second degree.
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My New Technique: Based on Partial 
Separability of the Response
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Results of Model-Based and Case-
Based Evaluations



Outline
• Motivation & context
• Techniques for “computer experiments”

– Monte Carlo
– Importance sampling
– Latin hypercube sampling
– Hammersley sequence sampling
– Quadrature and cubature

• Some cautions



Why Models Can Go Wrong

• Right model → Inaccurate answer 
– Rounding error 
– Truncation error
– Ill conditioning

• Right model → Misleading answer
– Chaotic systems

• Right model → No answer whatsoever
– Failure to converge
– Algorithmic complexity

• Not-so right model → Inaccurate answer
– Unmodeled effects
– Bugs in coding the model



Errors in Scientific Software
• Experiment T1 

– Statically measured errors in code
– Cases drawn from many industries
– ~10 serious faults per 1000 lines of commercially 

available code
• Experiment T2 

– Several independent implementations of the same 
code on the same input data

– One application studied in depth (seismic data 
processing)

– Agreement of 1 or 2 significant figures on average

Hatton, Les, 1997, “The T Experiments: Errors in Scientific Software”, IEEE 
Computational Science and Engineering.



Definitions
• Accuracy – The ability of a model to faithfully represent 

the real world 
• Resolution – The ability of a model to distinguish 

properly between alternative cases
• Validation – The process of determining the degree to 

which a model is an accurate representation of the real 
world from the perspective of the intended uses of the 
model. (AIAA, 1998)

• Verification – The process of determining that a model 
implementation accurately represents the developer’s 
conceptual description of the model and the solution to 
the model. (AIAA, 1998)



Model Validation in Engineering

• A model of an engineering system can be 
validated using data to some degree within 
some degree of confidence

• Physical data on that specific system 
cannot be gathered until the system is 
designed and built

• Models used for design are never fully 
validated at the time design decisions 
must be made



Next Steps
• Friday 4 May  

– Exam review
• Monday 7 May – Frey at NSF
• Wednesday 9 May – Exam #2
• Wed and Fri, May 14 and 16

– Final project presentations
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