# **Multiple Regression**

#### **Dan Frey**

Associate Professor of Mechanical Engineering and Engineering Systems



### Plan for Today

- Multiple Regression
  - Estimation of the parameters
  - Hypothesis testing
  - Regression diagnostics
  - Testing lack of fit
- Case study
- Next steps

#### The Model Equation



These 1's allow  $\beta_0$  to enter the equation without being mult by x's

# The Model Equation $y = X\beta + \epsilon$

Each row of X is paired with an observation Each column of X is paired with a coefficient

 $\begin{array}{ccc} x_{12} & \cdots \\ x_{22} & \cdots \\ \vdots & \ddots \end{array}$ 

 $x_{n2}$ 

 $x_{11}$ 

 $x_{21}$ 

 $X_{n1}$ 

 $X_{1k}$ 

 $x_{2k}$ 

 $X_{nk}$ 

 $E(\varepsilon_i) = 0$  $Var(\varepsilon_i) = \sigma^2$ 



Each observation is affected by an independent homoscedastic normal variates



There are *k* coefficients



#### **Concept Question**

#### Which of these is a valid X matrix?

 $\mathbf{X} = \begin{bmatrix} 1 & 5.0m & 0.3 \sec \\ 1 & 7.1m & 0.2 \sec \\ 1 & 3.2m & 0.7 \sec \\ 1 & 5.4m & 0.4 \sec \end{bmatrix} \mathbf{X} = \begin{bmatrix} 1 & 5.0m & 0.3m \\ 1 & 7.1V & 0.2V \\ 1 & 3.2 \sec & 0.7 \sec \\ 1 & 3.2 \sec & 0.7 \sec \\ 1 & 5.4A & 0.4A \end{bmatrix} \quad \mathbf{X} = \begin{bmatrix} 1 & 5.0m & 0.1 \sec \\ 1 & 7.1m & 0.3 \sec \end{bmatrix}$ Α B 1) A only 7) A, B, & C 4) A and B 2) B only 5) B and C 8) None 3) C only 6) A and C 9) I don't know

#### Adding h.o.t. to the Model Equation



#### Estimation of the Parameters β

Assume the model equation  $\mathbf{y} = \mathbf{X}\mathbf{\beta} + \mathbf{\epsilon}$ 

We wish to minimize the sum squared error

$$L = \boldsymbol{\varepsilon}^{T} \boldsymbol{\varepsilon} = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{T} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$

To minimize, we take the derivative and set it equal to zero

$$\left. \frac{\partial L}{\partial \boldsymbol{\beta}} \right|_{\hat{\boldsymbol{\beta}}} = -2\mathbf{X}^T\mathbf{y} + 2\mathbf{X}^T\mathbf{X}\hat{\boldsymbol{\beta}}$$

 $\hat{\mathbf{v}} = \hat{\mathbf{v}}$ 

The solution is

$$\hat{\boldsymbol{\beta}} = \left( \mathbf{X}^T \mathbf{X} \right)^{-1} \mathbf{X}^T \mathbf{y}$$

And we define the fitted model

Done in MathCad:

### MathCad Demo Montgomery Example 10-1

Montgomery, D. C., 2001, *Design* and Analysis of Experiments, John Wiley & Sons.

#### DCM Example 10-1

Reaction Catalyst Viscosity of a temperature feed rate Polymer 2256 1 80 8 2340 1 93 9 2426 1 100 10 2293 12 1 82 2330 1 90 11 2368 1 99 8 2250 1 81 8 1 96 10 2409 X := y := +2364 1 94 12 disabled X := augment X. 2379 1 93 11 2440 1 97 13 2364 1 95 11 p := cols(X)p = 32404 1 100 8 n := rows(X)n = 162317 1 85 12 k := p - 12309 1 86 9 1 87 12 2328  $1.566 \times 10^{3}$  $\beta_{hat} := (x^T \cdot x)^{-1} \cdot x^T \cdot y$  $\beta$  hat = 7.621 8.585 y hat :=  $X \cdot \beta$  hat <u>ε</u> := y − y\_hat

ORIGIN := 1

#### **Breakdown of Sum Squares "Grand Total** $GTSS = \sum_{i=1}^{n} y_i^2$ Sum of Squares" $SS_T = \sum (y_i - \overline{y})^2$ SS due to mean i=1 $= n\overline{y}^2$ $SS_R = \sum (\hat{\mathbf{y}}_i - \overline{y})^2$ $\left(SS_E = \sum \mathbf{e}_i^2\right)$ i=1SS<sub>LOF</sub> $SS_{PE}$



Estimation of the Error Variance  $\sigma^2$ Remember the the model equation  $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}'$ 

If assumptions of the model equation hold, then

$$E(SS_E/(n-k-1)) = \sigma^2$$

So an **unbiased** estimate of  $\sigma^2$  is

$$\hat{\sigma}^2 = SS_E / (n - k - 1)$$

a.k.a. "coefficient of multiple determination"

# $^{\sim}R^2$ and Adjusted $R^2$

What fraction of the total sum of squares  $(SS_T)$  is accounted for jointly by all the parameters in the fitted model?

$$R^2 \equiv \frac{SS_R}{SS_T} = 1 - \frac{SS_E}{SS_T}$$

R<sup>2</sup> can only rise as parameters are added

$$R_{adj}^{2} \equiv 1 - \frac{SS_{E}/(n-p)}{SS_{T}/(n-1)} = 1 - \left(\frac{n-1}{n-p}\right)(1-R^{2})$$

 $R_{adj}^2$  can rise or drop as parameters are added

Back to MathCad Demo Montgomery Example 10-1

|  | $\mathbf{F} := \frac{\mathbf{SS}_{\mathbf{R}}}{\mathbf{SS}_{\mathbf{E}}} \cdot \frac{\mathbf{n} - \mathbf{k} - 1}{\mathbf{k}}$ | F =                                                       | 82.505 qI  | 7(0.05,k,n- | - <mark>k</mark> - 1) = 0. | 051     |         |    |
|--|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------|-------------|----------------------------|---------|---------|----|
|  | -                                                                                                                              | "reject Ho" if $F > aF(0.05, k, n - k - 1) =$ "reject Ho" |            |             |                            |         |         |    |
|  |                                                                                                                                | "accept Ho" otherwise                                     |            |             |                            |         |         |    |
|  | I                                                                                                                              | ucc                                                       | cept no ou | ci wise     |                            |         |         |    |
|  | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                           |                                                           |            |             |                            |         |         |    |
|  | Influence of the observations $H_{i,i}^{0.4}$                                                                                  |                                                           |            |             |                            |         |         |    |
|  |                                                                                                                                |                                                           |            | 0           | 5                          | 10      | 15      | 20 |
|  | Covariance of the residuals                                                                                                    |                                                           |            |             |                            | i       |         |    |
|  |                                                                                                                                |                                                           | 1          | 2           | 3                          | 4       | 5       |    |
|  |                                                                                                                                | 1                                                         | 174.074    | -25.35      | 17.472                     | -32.12  | -11.55  |    |
|  |                                                                                                                                | 2                                                         | -25.35     | 240.182     | -25.095                    | 3.015   | -10.307 |    |
|  |                                                                                                                                | 3                                                         | 17.472     | -25.095     | 220.326                    | 17.077  | -11.703 |    |
|  |                                                                                                                                | 4                                                         | -32.12     | 3.015       | 17.077                     | 200.413 | -28.569 |    |
|  |                                                                                                                                | 5                                                         | -11.55     | -10.307     | -11.703                    | -28.569 | 247.028 |    |
|  | SSE                                                                                                                            | 6                                                         | -13.233    | -39.278     | -47.08                     | 34.612  | -3.194  |    |
|  | $\frac{dE}{n-k-1} \cdot (\text{identity}(n) - H) =$                                                                            | 7                                                         | -89.303    | -26.083     | 14.074                     | -28.608 | -11.11  |    |
|  |                                                                                                                                | 8                                                         | 0.567      | -22.163     | -33.688                    | 3.028   | -13.462 |    |
|  |                                                                                                                                | 9                                                         | 18.594     | -5.781      | -23.693                    | -25.044 | -23.292 |    |
|  |                                                                                                                                | 10                                                        | 1.128      | -12.506     | -21.896                    | -18.033 | -19.257 |    |
|  |                                                                                                                                | 11                                                        | 44.511     | -0.523      | -32.286                    | -25.032 | -26.447 |    |
|  |                                                                                                                                | 12                                                        | 9.581      | -13.972     | -28.691                    | -11.008 | -18.377 |    |
|  |                                                                                                                                | 13                                                        | -9.007     | -40.011     | -50.478                    | 38.124  | -2.754  |    |
|  |                                                                                                                                | 14                                                        | -19.441    | 0.816       | 6.884                      | -56.654 |         |    |

Montgomery, D. C., 2001, *Design* and Analysis of Experiments, John Wiley & Sons.

#### Why Hypothesis Testing is Important in Multiple Regression

- Say there are 10 regressor variables
- Then there are 11 coefficients in a linear model
- To make a fully 2<sup>nd</sup> order model requires
  - 10 curvature terms in each variable
  - -10 choose 2 = 45 interactions
- You'd need 68 samples just to get the matrix X<sup>T</sup>X to be invertible
- You need a way to discard insignificant terms

# Test for Significance of Regression

The hypotheses are

$$H_0: \beta_1 = \beta_2 = \dots = \beta_k = 0$$
$$H_1: \beta_j \neq 0 \text{ for at least one } j$$

The test statistic is

$$F_0 = \frac{SS_R/k}{SS_E/(n-k-1)}$$

Reject  $H_0$  if

$$F_0 > F_{\alpha,k,n-k-1}$$

#### **Test for Significance Individual Coefficients**

The hypotheses are

$$H_0:\beta_j=0$$

$$H_1: \beta_j \neq 0$$

The test statistic is

Test for Significance of Groups of Coefficients

Partition the coefficients into two groups  $\beta = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}$  to be removed to remain



Basically, you form  $X_2$  by <u>removing</u> the columns associated with the coefficients you are testing for significance Test for Significance Groups of Coefficients

Reduced model  $\mathbf{y} = \mathbf{X}_2 \boldsymbol{\beta}_2 + \boldsymbol{\epsilon}$ 

The regression sum of squares for the reduced model is

$$SS_R(\boldsymbol{\beta}_2) = \mathbf{y}^T \mathbf{H}_2 \mathbf{y} - n\overline{y}^2$$

 $F_{\alpha.r.n-p}$ 

 $SS_{R}(\boldsymbol{\beta}_{1}|\boldsymbol{\beta}_{2}) \equiv SS_{R}(\boldsymbol{\beta}) - SS_{R}(\boldsymbol{\beta}_{2})$ 

Define the sum squares of the removed set given the other coefficients are in the model

$$\frac{r}{r}$$
 Reject  $H_0$  if  $F_0 >$ 

The partial F test

$$F_0 = \frac{SS_R(\boldsymbol{\beta}_1 | \boldsymbol{\beta}_2) / r}{SS_E / (n-p)}$$

#### Excel Demo -- Montgomery Ex10-2

|    | 1    | J        | K               | L            | М              | N         | 0        | P           | Q         | R          | S          | Т |
|----|------|----------|-----------------|--------------|----------------|-----------|----------|-------------|-----------|------------|------------|---|
| 23 |      |          |                 |              |                |           |          |             |           |            |            |   |
| 24 |      |          | Regression S    | tatistics    |                |           |          |             |           |            |            |   |
| 25 |      |          | Multiple R      | 0.907831     |                |           |          |             |           |            |            |   |
| 26 |      |          | R Square        | 0.824157     |                |           |          |             |           |            |            |   |
| 27 |      |          | Adjusted R Squa | 0.723675     |                |           |          |             |           |            |            |   |
| 28 |      |          | Standard Error  | 5.978135     |                |           |          |             |           |            |            |   |
| 29 |      |          | Observations    | 12           |                |           |          |             |           |            |            |   |
| 30 |      |          |                 |              |                |           |          |             |           |            |            |   |
| 31 |      |          | ANOVA           |              |                |           |          |             |           |            |            |   |
| 32 |      |          |                 | df           | SS             | MS        | F        | ignificance | F         |            |            |   |
| 33 |      |          | Regression      | 4            | 1172.5         | 293.125   | 8.202032 | 0.008857    |           |            |            |   |
| 34 |      |          | Residual        | 7            | 250.1666667    | 35.7381   |          |             |           |            |            |   |
| 35 |      |          | Total           | 11           | 1422.666667    |           |          |             |           |            |            |   |
| 36 |      |          |                 |              |                |           |          |             |           |            |            |   |
| 37 |      |          | (               | Coefficients | Standard Error | t Stat    | P-value  | Lower 95%   | Upper 95% | ower 95.0% | pper 95.0% | 6 |
| 38 |      |          | Intercept       | 49.33333     | 1.725738857    | 28.58679  | 1.65E-08 | 45.25261    | 53.41405  | 45.25261   | 53.41405   |   |
| 39 |      |          | X Variable 1    | 5.625        | 2.113589815    | 2.661349  | 0.032404 | 0.627158    | 10.62284  | 0.627158   | 10.62284   |   |
| 40 |      |          | X Variable 2    | 10.625       | 2.113589815    | 5.026992  | 0.001518 | 5.627158    | 15.62284  | 5.627158   | 15.62284   |   |
| 41 |      |          | X Variable 3    | 1.125        | 2.113589815    | 0.53227   | 0.611009 | -3.87284    | 6.122842  | -3.87284   | 6.122842   |   |
| 42 |      |          | X Variable 4    | -0.875       | 2.113589815    | -0.41399  | 0.691273 | -5.87284    | 4.122842  | -5.87284   | 4.122842   |   |
| 43 | _    |          |                 |              |                |           |          |             |           |            |            |   |
| 44 |      |          | Temperature     |              |                | Procesuro |          |             |           |            |            |   |
| 45 |      |          |                 |              | · ·            | lessure   |          |             | Con       | centration |            |   |
| 46 |      |          | 80              |              |                | 80 ]      |          |             |           | 80-1       |            |   |
| 47 |      |          | 70              | *            |                | 70        | *        |             | •         | 70         | •          |   |
| 48 |      | •        |                 |              | •              | 50<br>F0  |          |             | •         | 60         | •          |   |
| 49 |      | -        |                 | •            |                | 40        | •        |             | •         | 50         | •          |   |
| 50 |      | <b>•</b> |                 |              |                |           |          |             | •         | 30         | •          |   |
| 51 |      |          | 20              |              |                | 20        |          |             |           | 20         |            |   |
| 52 |      |          |                 | _            |                | 10        |          |             |           | -10        |            |   |
| 53 | -1.5 | -1       | -0.5 0 0.5      | 1 1.5        | -1.5 -1 -0.5   | 0 0.5     | 1 1.5    | -1.5        | -1 -0.5   | 0 0.5      | 1 15       |   |
| 54 |      |          |                 |              | L              |           |          |             |           |            |            | 1 |
| 55 |      |          |                 |              |                |           |          |             |           |            |            |   |
| 56 |      |          |                 |              |                |           |          |             |           |            |            |   |

Montgomery, D. C., 2001, Design and Analysis of Experiments, John Wiley & Sons.

#### **Factorial Experiments**

#### **Cuboidal Representation**



Exhaustive search of the space of discrete 2-level factors is the full factorial 2<sup>3</sup> experimental design

# **Adding Center Points**



Center points allow an experimenter to check for curvature and, if replicated, allow for an estimate of pure experimental error

### Plan for Today

- Mud cards
- Multiple Regression
  - Estimation of the parameters
  - Hypothesis testing
  - Regression diagnostics
    - Testing lack of fit
- Case study
- Next steps

| The                                                                         | e "Hat" Matrix                                                                                      |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Since                                                                       | $\hat{\boldsymbol{\beta}} = \left( \mathbf{X}^T \mathbf{X} \right)^{-1} \mathbf{X}^T \mathbf{y}$    |
| and                                                                         | $\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}}$                                             |
| therefore                                                                   | $\hat{\mathbf{y}} = \mathbf{X} \left( \mathbf{X}^T \mathbf{X} \right)^{-1} \mathbf{X}^T \mathbf{y}$ |
| So we define                                                                | $\mathbf{H} \equiv \mathbf{X} \left( \mathbf{X}^T \mathbf{X} \right)^{-1} \mathbf{X}^T$             |
| Which maps from observations $\mathbf{y}$ to predictions $\hat{\mathbf{y}}$ | $\hat{\mathbf{y}} = \mathbf{H}\mathbf{y}$                                                           |

# **Influence Diagnostics**

- The relative disposition of points in *x* space determines their effect on the coefficients
- The hat matrix **H** gives us an ability to check for leverage points
- $h_{ij}$  is the amount of leverage exerted by point  $\mathbf{y}_j$  on  $\hat{\mathbf{y}}_i$
- Usually the diagonal elements ~p/n and it is good to check whether the diagonal elements within 2X of that

#### MathCad Demo on Distribution of Samples and Its Effect on Regression

#### Plot the residuals



 $\mathbf{H} := \mathbf{X} \cdot \left(\mathbf{X}^T \cdot \mathbf{X}\right)^{-1} \cdot \mathbf{X}^T \qquad \qquad \mathbf{i} := 1 \dots 110$ 

#### Influence of the observations



#### Standardized Residuals

The residuals are defined as  $\mathbf{e} = \mathbf{y} - \hat{\mathbf{y}}$ 

So an unbiased estimate of  $\sigma^2$  is  $\hat{\sigma}^2 = SS_E/(n-p)$ 

The standardized residuals are defined as  $\mathbf{d} = \frac{\mathbf{e}}{\hat{\sigma}}$ 

If these elements were *z*-scores then with probability 99.7%

$$-3 < d_i < 3$$

#### **Studentized Residuals**

The residuals are defined as  $\mathbf{e} = \mathbf{y} - \hat{\mathbf{y}}$ 

therefore e = y - Hy = (I - H)y

So the covariance matrix of the residuals is

$$\operatorname{Cov}(\mathbf{e}) = \sigma^2 \operatorname{Cov}(\mathbf{I} - \mathbf{H})$$

The studentized residuals are defined as

$$r_i = \frac{e_i}{\sqrt{\hat{\sigma}^2 (1 - h_{ii})}}$$

If these elements were *z*-scores then with probability 99.7%

???? 
$$-3 < r_i < 3$$

#### Testing for Lack of Fit (Assuming a Central Composite Design)

 Compute the standard deviation of the center points and assume that represents the MS<sub>PE</sub>

$$MS_{PE} = \frac{\sum_{\text{center points}} (y_i - \overline{y})}{n_C - 1}$$

$$MS_{LOF} = \frac{SS_{LOF}}{p}$$

$$SS_{PE} = (n-1)MS_{PE}$$

 $SS_{PE} + SS_{LOF} = SS_{E}$ 

$$F_0 = \frac{MS_{LOF}}{MS_{PE}}$$

# **Concept Test**

- You perform a linear regression of 100 data points (n=100). There are two independent variables  $x_1$  and  $x_2$ . The regression  $R^2$  is 0.72. Both  $\beta_1$  and  $\beta_2$  pass a *t* test for significance. You decide to add the interaction  $x_1x_2$  to the model. Select <u>all</u> the things that <u>cannot</u> happen:
  - 1) Absolute value of  $\beta_1$  decreases
  - 2)  $\beta_1$  changes sign
  - 3)  $R^2$  decreases
  - 4)  $\beta_1$  fails the *t* test for significance

### Plan for Today

- Mud cards
- Multiple Regression
  - Estimation of the parameters
  - Hypothesis testing
  - Regression diagnostics
  - Testing lack of fit
- 📫 Case study
  - Next steps

### Scenario

- The FAA and EPA are interested in reducing CO2 emissions
- Some parameters of airline operations are thought to effect CO2 (e.g., Speed, Altitude, Temperature, Weight)
- Imagine flights have been made with special equipment that allowed CO2 emission to be measured (data provided)
- You will report to the FAA and EPA on your analysis of the data and make some recommendations

#### Phase One

- Open a Matlab window
- Load the data (load FAAcase3.mat)
- Explore the data

#### Phase Two

- Do the regression
- Examine the betas and their intervals
- Plot the residuals

y=[CO2./ground\_speed]; ones(1:3538)=1; X=[ones' TAS alt temp weight]; [b,bint,r,rint,stats] = regress(y,X,0.05); yhat=X\*b; plot(yhat,r,'+')

```
dims=size(X);
i=2:dims(1)-1;
climb(1)=1;
climb(dims(1))=0;
des(1)=0;
des(dims(1))=1;
climb(i)=(alt(i)>(alt(i-1)+100))|(alt(i+1)>(alt(i)+100));
des(i) = (alt(i) < (alt(i-1)-100)) | (alt(i+1) < (alt(i)-100));
for i=dims(1):-1:1
if climb(i)|des(i)
          y(i,:)=[]; X(i,:)=[]; yhat(i,:)=[]; r(i,:)=[];
end
end
hold off
plot(yhat,r,'or')
```

This code will remove the points at which the aircraft is climbing or descending

#### Try The Regression Again on Cruise Only Portions

- What were the effects on the residuals?
- What were the effects on the betas?

hold off [b,bint,r,rint,stats] = regress(y,X,0.05); yhat=X\*b; plot(yhat,r,'+')

#### See What Happens if We Remove Variables

- Remove weight & temp
- Do the regression (CO2 vs TAS & alt)
- Examine the betas and their intervals

[b,bint,r,rint,stats] = regress(y,X(:,1:3),0.05);

#### Phase Three

- Try different data (flight34.mat)
- Do the regression
- Examine the betas and their intervals
- Plot the residuals

y=[fuel\_burn]; ones(1:34)=1; X=[ones' TAS alt temp]; [b,bint,r,rint,stats] = regress(y,X,0.05); yhat=X\*b; plot(yhat,r,'+')

#### **Adding Interactions**

This line will add a interaction

What's the effect on the regression?

# Case Wrap-Up

- What were the recommendations?
- What other analysis might be done?
- What were the key lessons?

# Next Steps

- Wenesday 25 April
  - Design of Experiments
  - Please read "Statistics as a Catalyst to Learning"
- Friday 27 April
  - Recitation to support the term project
- Monday 30 April
  - Design of Experiments
- Wednesday 2 May
  - Design of Computer Experiments
- Friday 4 May?? Exam review??
- Monday 7 May Frey at NSF
- Wednesday 9 May Exam #2