Multiple Regression

Dan Frey

Associate Professor of Mechanical Engineering and Engineering Systems

Plan for Today

- Multiple Regression
- Estimation of the parameters
- Hypothesis testing
- Regression diagnostics
- Testing lack of fit
- Case study
- Next steps

The Model Equation

For a single variable

$$
Y=\alpha+\beta x+\varepsilon
$$

For multiple variables $\quad \mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon} \quad \alpha$ is renamed β_{0}

$$
\mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right] \quad \mathbf{X}=\left[\begin{array}{ccccc}
1 & x_{11} & x_{12} & \cdots & x_{1 k} \\
1 & x_{21} & x_{22} & \cdots & x_{2 k} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n 1} & x_{n 2} & \cdots & x_{n k}
\end{array}\right] \quad \boldsymbol{p}=\left[\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\vdots \\
\beta_{k}
\end{array}\right] \quad \boldsymbol{\varepsilon}=\left[\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\vdots \\
\varepsilon_{n}
\end{array}\right]
$$

These 1's allow β_{0} to enter the equation without being mult by x 's

The Model Equation $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$

Each row of $\mathbf{X} \quad$ Each column of $\mathbf{X} \quad E\left(\varepsilon_{i}\right)=0$ is paired with an observation is paired with a $\quad \operatorname{Var}\left(\varepsilon_{i}\right)=\sigma^{2}$

$$
\mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
\vdots \\
y_{n}
\end{array}\right] \mathbf{X}=\left[\begin{array}{ccccc}
1 & x_{11} & x_{12} & \cdots & x_{1 k} \\
1 & x_{21} & x_{22} & \cdots & x_{2 k} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n 1} & x_{n 2} & \cdots & x_{n k}
\end{array}\right] \longleftrightarrow \mathbf{\varepsilon}=\left[\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\vdots \\
\varepsilon_{n}
\end{array}\right]
$$

There are n observations of the response

Each observation is affected by an independent homoscedastic normal variates

Accounting for Indices

$$
\begin{gathered}
\mathbf{W}=\left[\begin{array}{c}
\text { nxp } \\
n \times 1
\end{array}\right. \\
\mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right] \quad \mathbf{X}=\left[\begin{array}{ccccc}
1 & x_{11} & x_{12} & \cdots & x_{1 k} \\
1 & x_{21} & x_{22} & \cdots & x_{2 k} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n 1} & x_{n 2} & \cdots & x_{n k}
\end{array}\right] \quad \boldsymbol{\beta}=\left[\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\vdots \\
\beta_{k}
\end{array}\right] \quad \boldsymbol{\varepsilon}=\left[\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\vdots \\
\varepsilon_{n}
\end{array}\right]
\end{gathered}
$$

Concept Question

Which of these is a valid \mathbf{X} matrix?

$$
\begin{gathered}
\mathbf{X}=\left[\begin{array}{ccc}
1 & 5.0 m & 0.3 \mathrm{sec} \\
1 & 7.1 m & 0.2 \mathrm{sec} \\
1 & 3.2 m & 0.7 \mathrm{sec} \\
1 & 5.4 m & 0.4 \mathrm{sec}
\end{array}\right] \quad \mathbf{X}=\left[\begin{array}{ccc}
1 & 5.0 \mathrm{~m} & 0.3 m \\
1 & 7.1 \mathrm{~V} & 0.2 \mathrm{~V} \\
1 & 3.2 \mathrm{sec} & 0.7 \mathrm{sec} \\
1 & 5.4 \mathrm{~A} & 0.4 \mathrm{~A}
\end{array}\right] \quad \mathbf{X}=\left[\begin{array}{lll}
1 & 5.0 m & 0.1 \mathrm{sec} \\
1 & 7.1 m & 0.3 \mathrm{sec}
\end{array}\right] \\
\text { A }
\end{gathered}
$$

1) A only
2) B only
3) C only
4) A and B
5) B and C
6) A and C
7) None
8) I don't know

Adding h.o.t. to the Model Equation

Each row of \mathbf{X} is paired with an observation

$$
\mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n} \\
\hdashline
\end{array} \longleftrightarrow\left[\begin{array}{ccccc}
1 & x_{11} & x_{12} & x_{11} x_{12} & x_{11}{ }^{2} \\
1 & x_{21} & x_{22} & x_{21} x_{22} & x_{21}{ }^{2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n 1} & x_{n 2} & x_{n 1} x_{n 2} & x_{n 1}{ }^{2}
\end{array}\right]\right.
$$

There are n observations of the response

You can add interactions

You can add curvature

Estimation of the Parameters β

Assume the model equation

$$
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}
$$

We wish to minimize the sum squared error

$$
L=\boldsymbol{\varepsilon}^{T} \boldsymbol{\varepsilon}=(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{T}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})
$$

To minimize, we take the derivative and set it equal to zero
$\left.\frac{\partial L}{\partial \boldsymbol{\beta}}\right|_{\hat{\boldsymbol{\beta}}}=-2 \mathbf{X}^{T} \mathbf{y}+2 \mathbf{X}^{T} \mathbf{X} \hat{\boldsymbol{\beta}}$
The solution is

$$
\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
$$

And we define the fitted model

$$
\hat{\mathbf{y}}=\mathbf{X} \hat{\boldsymbol{\beta}}
$$

Done in MathCad:
DCM Example 10-1

MathCad Demo Montgomery Example 10-1

Montgomery, D. C., 2001, Design and Analysis of Experiments, John Wiley \& Sons.

Reaction

 temperature feed rateViscosity of a Polymer
$\mathrm{X}:=$ augment $\left[\mathrm{X},\left(\mathrm{X}^{\langle 2\rangle}\right)^{2}\right]^{\mathbf{\top}}$ disabled
$\begin{array}{ll}\mathrm{p}:=\operatorname{cols}(\mathrm{X}) & \mathrm{p}=3 \\ \mathrm{n}:=\operatorname{rows}(\mathrm{X}) & \mathrm{n}=16\end{array}$
$\mathrm{k}:=\mathrm{p}-1$

$$
\beta_{-} \text {hat }:=\left(\mathrm{x}^{\mathrm{T}} \cdot \mathrm{X}\right)^{-1} \cdot \mathrm{X}^{\mathrm{T}} \cdot \mathrm{y} \quad \beta_{-} \text {hat }=\left(\begin{array}{c}
1.566 \times 10^{3} \\
7.621 \\
8.585
\end{array}\right)
$$

y_hat :=X•_hat

$$
\mathcal{E}_{\mathrm{w}}^{\varepsilon_{0}}:=\mathrm{y}-\mathrm{y} \text { _hat }
$$

Breakdown of Sum Squares

Breakdown of DOF

Estimation of the Error Variance σ^{2}

Remember the the model equation $\quad \mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$

If assumptions of the model equation hold, then

$$
E\left(S S_{E} /(n-k-1)\right)=\sigma^{2}
$$

So an unbiased estimate of σ^{2} is

$$
\hat{\sigma}^{2}=S S_{E} /(n-k-1)
$$

a.k.a. "coefficient of

 multiple determination"
${ }^{\square} R^{2}$ and Adjusted R^{2}

What fraction of the total sum of squares $\left(S S_{T}\right)$ is accounted for jointly by all the parameters in the fitted model?

$$
\begin{gathered}
R^{2} \equiv \frac{S S_{R}}{S S_{T}}=1-\frac{S S_{E}}{S S_{T}} \quad \begin{array}{c}
R^{2} \text { can only rise as } \\
\text { parameters are } \\
\text { added }
\end{array} \\
R_{a d j}^{2} \equiv 1-\frac{S S_{E} /(n-p)}{S S_{T} /(n-1)}=1-\left(\frac{n-1}{n-p}\right)\left(1-R^{2}\right)
\end{gathered}
$$

$R_{\text {adj }}^{2}$ can rise or drop as parameters are added

Back to MathCad Demo Montgomery Example 10-1

Montgomery, D. C., 2001, Design and Analysis of Experiments, John Wiley \& Sons.

$$
\underset{\mathrm{F}}{\underset{\mathrm{~F}}{\mathrm{~F}}:=\frac{\mathrm{SS}_{\mathrm{R}}}{\mathrm{SS}_{\mathrm{E}}} \cdot \frac{\mathrm{n}-\mathrm{k}-1}{\mathrm{k}} \quad} \quad \begin{aligned}
& \mathrm{F}=82.505 \quad \mathrm{qF}(0.05, \mathrm{k}, \mathrm{n}-\mathrm{k}-1)=0.051 \\
& \\
& \\
& \\
& \\
& \text { "reject } \mathrm{Ho} " \text { if } \mathrm{F}>\mathrm{qF}(0.05, \mathrm{k}, \mathrm{n}-\mathrm{k}-1) \quad=\text { "reject } \mathrm{Ho} " \\
& \text { "acccept } \mathrm{Ho}^{\prime} \quad \text { otherwise }
\end{aligned}
$$

$$
\mathrm{H}:=\mathrm{x} \cdot\left(\mathrm{x}^{\mathrm{T}} \cdot \mathrm{x}\right)^{-1} \cdot \mathrm{x}^{\mathrm{T}}
$$

$$
2 \cdot \frac{\mathrm{p}}{\mathrm{n}}=0.375 \quad \mathrm{i}:=1 . . \mathrm{n}
$$

Covariance of the residuals						
		1	2	3	4	5
	1	174.074	-25.35	17.472	-32.12	-11.55
	2	-25.35	240.182	-25.095	3.015	-10.307
	3	17.472	-25.095	220.326	17.077	-11.703
	4	-32.12	3.015	17.077	200.413	-28.569
	5	-11.55	-10.307	-11.703	-28.569	247.028
$\frac{\mathrm{SS}_{\mathrm{E}}}{\mathrm{n}-\mathrm{k}-1} \cdot(\text { identity }(\mathrm{n})-\mathrm{H})=$	6	-13.233	-39.278	-47.08	34.612	-3.194
	7	-89.303	-26.083	14.074	-28.608	-11.11
	8	0.567	-22.163	-33.688	3.028	-13.462
	9	18.594	-5.781	-23.693	-25.044	-23.292
	10	1.128	-12.506	-21.896	-18.033	-19.257
	11	44.511	-0.523	-32.286	-25.032	-26.447
	12	9.581	-13.972	-28.691	-11.008	-18.377
	13	-9.007	-40.011	-50.478	38.124	-2.754
	14	-19.441	0.816	6.884	-56.654	\cdots

Why Hypothesis Testing is Important in Multiple Regression

- Say there are 10 regressor variables
- Then there are 11 coefficients in a linear model
- To make a fully $2^{\text {nd }}$ order model requires
- 10 curvature terms in each variable
- 10 choose $2=45$ interactions
- You'd need 68 samples just to get the matrix $\mathbf{X}^{T} \mathbf{X}$ to be invertible
- You need a way to discard insignificant terms

Test for Significance of Regression

The hypotheses are

$$
\begin{aligned}
& H_{0}: \beta_{1}=\beta_{2}=\ldots=\beta_{k}=0 \\
& H_{1}: \beta_{j} \neq 0 \text { for at least one } j
\end{aligned}
$$

The test statistic is

$$
F_{0}=\frac{S S_{R} / k}{S S_{E} /(n-k-1)}
$$

Reject H_{0} if

$$
F_{0}>F_{\alpha, k, n-k-1}
$$

Test for Significance Individual Coefficients

The hypotheses are $H_{0}: \beta_{j}=0$

$$
H_{1}: \beta_{j} \neq 0
$$

The test statistic is

$$
\begin{aligned}
& \begin{array}{l}
t_{0}=\frac{\hat{\beta}_{j}}{\sqrt{\hat{\sigma}^{2} C_{j j}}}
\end{array} \begin{array}{c}
C=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \\
\leftarrow \begin{array}{c}
\text { Standard error } \\
\downarrow
\end{array} \\
\sqrt{\hat{\sigma}^{2} C_{j j}}
\end{array} \\
& t_{\alpha / 2, n-k-1}
\end{aligned}
$$

Test for Significance of Groups of Coefficients

Partition the coefficients into two groups $\boldsymbol{\beta}=\left[\begin{array}{l}\boldsymbol{\beta}_{2} \\ \boldsymbol{\beta}_{2}\end{array}\right]_{\text {to }}$ to be remain
Reduced model $\quad \mathbf{y}=\mathbf{X}_{2} \boldsymbol{\beta}_{2}+\boldsymbol{\varepsilon}$

$$
\mathbf{X}=\left[\begin{array}{ccccc}
1 & x_{11} & x_{12} & \cdots & x_{\mid k} \\
1 & x_{21} & \psi_{22} & \cdots & x_{k k} \\
\vdots & \vdots & \vdots & \ddots & \\
1 & x_{n 1} & x_{n 2} & \cdots & x_{n k}
\end{array}\right] \quad \mathbf{X}_{2}
$$

$$
\begin{array}{|l|}
H_{0}: \boldsymbol{\beta}_{1}=\mathbf{0} \\
H_{1}: \boldsymbol{\beta}_{1} \neq \mathbf{0} \\
\hline
\end{array}
$$

Basically, you form \mathbf{X}_{2} by removing the columns associated with the coefficients you are testing for significance

Test for Significance Groups of Coefficients

Reduced model $\quad \mathbf{y}=\mathbf{X}_{2} \boldsymbol{\beta}_{2}+\boldsymbol{\varepsilon}$
The regression sum of squares for the reduced model is

$$
S S_{R}\left(\boldsymbol{\beta}_{2}\right)=\mathbf{y}^{T} \mathbf{H}_{2} \mathbf{y}-n \bar{y}^{2}
$$

Define the sum squares of the removed set given the

$$
S S_{R}\left(\boldsymbol{\beta}_{1} \mid \boldsymbol{\beta}_{2}\right) \equiv S S_{R}(\boldsymbol{\beta})-S S_{R}\left(\boldsymbol{\beta}_{2}\right)
$$ other coefficients are in the model

The partial
F test

Reject H_{0} if $\quad F_{0}>F_{\alpha, r, n-p}$

Excel Demo -- Montgomery Ex10-2

Montgomery, D. C., 2001, Design and Analysis of Experiments, John Wiley \& Sons.

Factorial Experiments

 Cuboidal Representation

Exhaustive search of the space of discrete 2-level factors is the full factorial 2^{3} experimental design

Adding Center Points

Center points allow an experimenter to check for curvature and, if replicated, allow for an estimate of pure experimental error

Plan for Today

- Mud cards
- Multiple Regression
- Estimation of the parameters
- Hypothesis testing

Regression diagnostics

- Testing lack of fit
- Case study
- Next steps

The "Hat" Matrix

Since

$$
\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
$$

and

$$
\hat{\mathbf{y}}=\mathbf{X} \hat{\boldsymbol{\beta}}
$$

therefore

$$
\hat{\mathbf{y}}=\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
$$

So we define

$$
\mathbf{H} \equiv \mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T}
$$

Which maps from observations y to

$$
\hat{\mathbf{y}}=\mathbf{H y}
$$ predictions $\hat{\mathbf{y}}$

Influence Diagnostics

- The relative disposition of points in x space determines their effect on the coefficients
- The hat matrix \mathbf{H} gives us an ability to check for leverage points
- $h_{i j}$ is the amount of leverage exerted by point \mathbf{y}_{j} on $\hat{\mathbf{y}}_{i}$
- Usually the diagonal elements $\sim p / n$ and it is good to check whether the diagonal elements within 2X of that

Plot the residuals

MathCad Demo on Distribution of Samples and Its Effect on Regression

$$
\mathrm{H}:=\mathrm{X} \cdot\left(\mathrm{x}^{\mathrm{T}} \cdot \mathrm{X}\right)^{-1} \cdot \mathrm{X}^{\mathrm{T}} \quad \mathrm{i}:=1 . .110
$$

Influence of the observations

Standardized Residuals

The residuals are defined as

$$
\mathbf{e}=\mathbf{y}-\hat{\mathbf{y}}
$$

So an unbiased estimate of σ^{2} is

$$
\hat{\sigma}^{2}=S S_{E} /(n-p)
$$

The standardized residuals are defined as

$$
\mathbf{d}=\frac{\mathbf{e}}{\hat{\sigma}}
$$

If these elements were z-scores then with probability 99.7\%

$$
-3<d_{i}<3
$$

Studentized Residuals

The residuals are defined as $\quad \mathbf{e}=\mathbf{y}-\hat{\mathbf{y}}$
therefore

$$
\mathbf{e}=\mathbf{y}-\mathbf{H y}=(\mathbf{I}-\mathbf{H}) \mathbf{y}
$$

So the covariance matrix of the residuals is

$$
\operatorname{Cov}(\mathbf{e})=\sigma^{2} \operatorname{Cov}(\mathbf{I}-\mathbf{H})
$$

The studentized residuals

$$
r_{i}=\frac{e_{i}}{\sqrt{\hat{\sigma}^{2}\left(1-h_{i i}\right)}}
$$

If these elements were z-scores then with probability 99.7\%

$$
-3<r_{i}<3
$$

Testing for Lack of Fit

 (Assuming a Central Composite Design)- Compute the standard deviation of the center points and assume that represents the $M S_{P E}$

$$
\begin{array}{lr}
M S_{P E}=\frac{\sum_{\text {center points }}\left(y_{i}-\bar{y}\right)}{n_{C}-1} & M S_{L O F}=\frac{S S_{L O F}}{p} \\
S S_{P E}=(n-1) M S_{P E} & F_{0}=\frac{M S_{L O F}}{M S_{P E}}
\end{array}
$$

Concept Test

- You perform a linear regression of 100 data points ($n=100$). There are two independent variables x_{1} and x_{2}. The regression R^{2} is 0.72 . Both β_{1} and β_{2} pass a t test for significance. You decide to add the interaction $x_{1} x_{2}$ to the model. Select all the things that cannot happen:

1) Absolute value of β_{1} decreases
2) β_{1} changes sign
3) R^{2} decreases
4) β_{1} fails the t test for significance

Plan for Today

- Mud cards
- Multiple Regression
- Estimation of the parameters
- Hypothesis testing
- Regression diagnostics
- Testing lack of fit

Case study

- Next steps

Scenario

- The FAA and EPA are interested in reducing CO2 emissions
- Some parameters of airline operations are thought to effect CO2 (e.g., Speed, Altitude, Temperature, Weight)
- Imagine flights have been made with special equipment that allowed CO2 emission to be measured (data provided)
- You will report to the FAA and EPA on your analysis of the data and make some recommendations

Phase One

- Open a Matlab window
- Load the data (load FAAcase3.mat)
- Explore the data

Phase Two

- Do the regression
- Examine the betas and their intervals
- Plot the residuals

```
y=[CO2./ground_speed];
ones(1:3538)=1;
X=[ones' TAS alt temp weight];
[b,bint,r,rint,stats] = regress(y,X,0.05);
yhat=X*b;
plot(yhat,r,'+')
```

```
dims=size(X);
i=2:dims(1)-1;
climb(1)=1;
climb(dims(1))=0;
des(1)=0;
des(dims(1))=1;
climb(i)=(alt(i)>(alt(i-1)+100))|(alt(i+1)>(alt(i)+100));
des(i)=(alt(i)<(alt(i-1)-100))|(alt(i+1)<(alt(i)-100));
for i=dims(1):-1:1
if climb(i)|des(i)
    y(i,:)=\square; X(i,:)=\square; yhat(i,:)=\square; r(i,:)=\square];
end
end
hold off
plot(yhat,r,'or')
```

This code will remove the points at which the aircraft is climbing or descending

Try The Regression Again on Cruise Only Portions

-What were the effects on the residuals?

- What were the effects on the betas?

```
hold off
[b,bint,r,rint,stats] = regress(y,X,0.05);
yhat=X*b;
plot(yhat,r,'+')
```


See What Happens if We Remove Variables

- Remove weight \& temp
- Do the regression (CO2 vs TAS \& alt)
- Examine the betas and their intervals

> [b,bint,r,rint,stats] = regress(y,x(:,1:3),0.05);

Phase Three

- Try different data (flight34.mat)
- Do the regression
- Examine the betas and their intervals
- Plot the residuals

$$
\begin{aligned}
& \text { y=[fuel_burn]; } \\
& \text { ones(1:34)=1; } \\
& \mathrm{X}=[\text { ones' TAS alt temp]; } \\
& \text { [b,bint,r,rint,stats] = regress(} \mathrm{y}, \mathrm{X}, 0.05 \text {); } \\
& \text { yhat=X*b; } \\
& \text { plot(yhat,r,'+') }
\end{aligned}
$$

Adding Interactions

$X(:, 5)=X(:, 2) .{ }^{*} X(:, 3)$;

This line will add a interaction

What's the effect on the regression?

Case Wrap-Up

-What were the recommendations?

- What other analysis might be done?
-What were the key lessons?

Next Steps

- Wenesday 25 April
- Design of Experiments
- Please read "Statistics as a Catalyst to Learning"
- Friday 27 April
- Recitation to support the term project
- Monday 30 April
- Design of Experiments
- Wednesday 2 May
- Design of Computer Experiments
- Friday 4 May?? Exam review??
- Monday 7 May - Frey at NSF
- Wednesday 9 May - Exam \#2

