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Concept Question
In hospital (A), 45 babies are born each day (on average) 

and in the smaller hospital (B) about 15 babies are born 
each day (on average). 

Let's model births as a Bernoulli process and both hospitals 
have p=0.5 (baby boys and girls equally probable).

For a period of a year, each hospital recorded the days on 
which more than 60% of the babies were boys. 

1) Hospital A probably recorded more days with >60% boys
2) Hospital B probably recorded more days with >60% boys
3) Hospital A and B are probably about the same



The Binomial Distribution
n=10; 
x = 0:n;
y = binopdf(x,n,0.5);
subplot(3,1,1); bar(x,y,0.1)

n=100; 
x = 0:n;
y = binopdf(x,n,0.5);
subplot(3,1,2); bar(x,y,0.1)

n=1000; 
x = 0:n;
y = binopdf(x,n,0.5);
subplot(3,1,3); bar(x,y,0.1)



Plan for Today

• Regression 
– History / Motivation
– The method of least squares
– Inferences based on the least squares 

estimators
– Checking the adequacy of the model 
– The Bootstrap
– Non-linear regression



Regression Toward the Mean

Galton, Francis, 1886, 
"'Regression towards mediocrity 
in hereditary stature," Journal of 
the Anthropological Institute
15:246-63.  



Regression Toward the Mean
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Consider the joint pdf of two standard normal variates

Now, let's say you make an observation x and condition 
your marginal distribution of y
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“... while attempting to teach flight instructors that 
praise is more effective than punishment for 
promoting skill-learning...one of the most seasoned 
instructors in the audience raised his hand and made 
his own short speech..."On many occasions I have 
praised flight cadets for clean execution of some 
aerobatic maneuver, and in general when they try it 
again, they do worse. On the other hand, I have often 
screamed at cadets for bad execution, and in general 
they do better the next time. So please don't tell us 
that reinforcement works and punishment does not, 
because the opposite is the case." ...because we 
tend to reward others when they do well and punish 
them when they do badly, and because there is 
regression to the mean, it is part of the human 
condition that we are statistically punished for 
rewarding others and rewarded for punishing them.”

Regression Toward the Mean

Kahneman, D., 2002, Bank of Sweden "Nobel" Prize Lecture



What is Linear Regression?

εβα ++= xY
random

theoretical 
parameters

independent 
variable

1. Form a probabilistic model

2. Get a sample of data in pairs (Xi,Yi), i=1...n
3. Estimate the parameters of the model from the data

random
E(ε)=0



What can we do with Regression?

Linear force Applied by Prosthetic Hand versus 
Input Cable Tension
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What can we do with Regression?

Extrapolate

Suggest a TrendDiagnose a Problem

Source: Wikipedia. Courtesy of globalwarmingart.com.

Photo and screen shot removed due to copyright restrictions.
Calibration apparatus by Renishaw plc.



Interpolation is Different

Kriging

• Fits a curve to a set of points
• But assume no error in the points themselves
• Enable estimates at values other than the observed ones

x = 0:10;
y = sin(x);
xx = 0:.25:10;
yy = spline(x,y,xx);
plot(x,y,'o',xx,yy)

spline interpolation Courtesy of Prof. Emmanuel Vazquez.  Used with permission.

http://upload.wikimedia.org/wikipedia/commons/1/15/Example_krig.png


Plan for Today

• Regression 
– History / Motivation
– The method of least squares
– Inferences based on the least squares 

estimators
– Checking the adequacy of the model 
– The Bootstrap
– Non-linear regression



Regression Curve of Y on x

εβα ++= xY
random

theoretical 
parameters

independent 
variable

random
E(ε)=0



Regression Curve vs Prediction Equation

εβα ++= xY

random
Random

E(ε)=0
theoretical 
parameters

independent variable

bxay +=ˆ
computed estimates of 

theoretical parameters α and β
estimated E(Y ׀X)

Regression Curve

Prediction Equation



Matlab Code Simulating the 
Probability model

hold on
alpha=2;
beta=3;
eps_std=1;
for trial=1:100
x(trial) = random('Uniform',0,1,1,1);
eps= random('Normal',0, eps_std,1,1);
Y(trial)=alpha+beta*x(trial)+eps;
end
plot(x,Y,'+')
hold on
plot(x,alpha+beta*x,'-','Color','r')



The Method of Least Squares
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Matlab Code for Regression
p = polyfit(x,Y,1)
y_hat=polyval(p,x);
plot(x,y_hat,'-','Color', 'g')



Computing Least Squares 
Estimators
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Example –
Evaporation vs Air Velocity

Air vel
(cm/sec)

Evap coeff. 
(mm2/sec)

20 0.18
60 0.37

100 0.35
140 0.78
180 0.56
220 0.75
260 1.18
300 1.36
340 1.17
380 1.65



Concept Question
You are seeking to calibrate a load cell.  You wish to 
determine the regression line relating voltage (in Volts) 
to force (in Newtons).  What are the units of 
a, b, Sxx, and Sxy respectively?

1) N, N, N, and N 
2) V, V, V2, and V2

3) V, V/N, N2, and VN
4) V/N, N, VN, and V2

5) None of the variables have units



Regression Curve vs Prediction Equation

εβα ++= xY

random
Random

E(ε)=0
theoretical 
parameters

independent variable

bxay +=ˆ
computed estimates of 

theoretical parameters α and β
estimated E(Y ׀x)

Regression Curve

Prediction Equation



Matlab Code Simulating the 
Probability model

hold on
alpha=2;
beta=3;
eps_std=1;
for trial=1:100
x(trial) = random('Uniform',0,1,1,1);
eps= random('Normal',0, eps_std,1,1);
Y(trial)=alpha+beta*x(trial)+eps;
end
plot(x,Y,'+')
hold on
plot(x,alpha+beta*x,'-','Color','r')



Why is the Least Squares 
Approach Important?

There are other criteria that also provide reasonable 
fits to data (e.g. minimize the max error)

BUT, if the data arise from the model below, then 
least squares method provides an unbiased, 
minimum variance estimate of α and β

εβα ++= xY
random

random

theoretical 
parameters

independent 
variable



Plan for Today

• Regression 
– History / Motivation
– The method of least squares
– Inferences based on the least squares 

estimators
– Checking the adequacy of the model 
– The Bootstrap
– Non-linear regression



Assumptions Required for 
Inferences to be Discussed

• The Yi are 
– independent
– normally distributed
– with means 
– and common variance 
(homoscedastic)

iii XY εβα ++=

iXβα +



Inferences Based on the Least 
Squares Estimators
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is a random variable having the t distribution 
with n-2 degrees of freedom



Evaporation vs Air Velocity
Hypothesis Tests

Air vel
(cm/sec)

Evap coeff. 
(mm2/sec)

20 0.18
60 0.37

100 0.35
140 0.78
180 0.56
220 0.75
260 1.18
300 1.36
340 1.17
380 1.65

Air vel (cmEvap coeff. (mm2/sec)
20 0.18 SUMMARY OUTPUT
60 0.37

100 0.35 Regression Statistics
140 0.78 Multiple R 0.934165
180 0.56 R Square 0.872665
220 0.75 Adjusted R Square 0.854474
260 1.18 Standard Error 0.159551
300 1.36 Observations 9
340 1.17

ANOVA
df SS MS F ignificance F

Regression 1 1.221227 1.221227 47.97306 0.000226
Residual 7 0.178196 0.025457
Total 8 1.399422

Coefficientsandard Erro t Stat P-value Lower 95%Upper 95%ower 95.0%Upper 95.0%
Intercept 0.102444 0.106865 0.958637 0.369673 -0.15025 0.355139 -0.15025 0.355139
X Variable 1 0.003567 0.000515 6.926259 0.000226 0.002349 0.004784 0.002349 0.004784

RESIDUAL OUTPUT PROBABILITY OUTPUT

Observation Predicted YResiduals dard Residuals Percentile Y
1 0.173778 0.006222 0.041691 5.555556 0.18
2 0.316444 0.053556 0.35884 16.66667 0.35
3 0.459111 -0.10911 -0.73108 27.77778 0.37
4 0.601778 0.178222 1.194149 38.88889 0.56
5 0.744444 -0.18444 -1.23584 50 0.75
6 0.887111 -0.13711 -0.91869 61.11111 0.78
7 1.029778 0.150222 1.006539 72.22222 1.17
8 1.172444 0.187556 1.256685 83.33333 1.18
9 1.315111 -0.14511 -0.97229 94.44444 1.36

X Variable 1  Residual Plot
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Evaporation vs Air Velocity
Confidence Intervals for Prediction
Air vel

(cm/sec)
Evap coeff. 
(mm2/sec)

20 0.18
60 0.37

100 0.35
140 0.78
180 0.56
220 0.75
260 1.18
300 1.36
340 1.17
380 1.65

[p,S] = polyfit(x,y,1);
alpha=0.05;
[y_hat,del]=polyconf(p,x,S,alpha); 
plot(x,y,'+',x,y_hat,'g')
hold on
plot(x,y_hat+del,'r:')
plot(x,y_hat-del,'r:')



Checking the Assumptions

• Plot the residuals
– Check for patterns
– Check for uniform variance

hold off
e=y-y_hat; 
plot(y_hat, e, 'or')



Checking the Assumptions

• Normal scores-plot 
of the residuals
– Check for linearity
– If there are outliers

• check sensitivity of 
results 

• try to identify “special 
causes”

hold off
normplot(e)



Plan for Today

• Regression 
– History / Motivation
– The method of least squares
– Inferences based on the least squares 

estimators
– Checking the adequacy of the model 
– The Bootstrap
– Non-linear regression



The Bootstrap
• A random smaple of size n is observed 

from a completely unspecified probability 
distribution F

• Given a random variable R(X,F), 
estimate the sampling distribution on R
on the basis of he observed data x

Efron, B., 1979, "Bootstrap Methods: Another Look at the 
Jackknife," Annals of Statistics 7:1-26. 

FXxX iii ind~   ,=



The Bootstrap
• Construct a sample probability distribution    , 

putting mass 1/n at each point x1, x2, ..., xn
• With     fixed, draw a random sample X* of 

size n from
• Approximate the sampling distribution as the 

bootstrap distribution

• "...shown to work satistfactorily on a variety of 
estimation problems."

 )ˆ,( ** FRR X=

Efron, B., 1979, "Bootstrap Methods: Another Look at the 
Jackknife," Annals of Statistics 7:1-26. 

F̂
F̂



The Bootstrap
• In the Acknowledgements:

...I also wish to thank the many freinds who 
suggested names more colorful than Bootstrap, 
including Swiss Army Knife, Meat Axe, Swan-Dive, 
Jack-Rabbit, and my personal favorite, the 
Shotgun, which, to paraphrase Tukey, "can blow 
the head off any problem if the statistician can 
stand the resulting mess."

Efron, B., 1979, "Bootstrap Methods: Another Look at the 
Jackknife," Annals of Statistics 7:1-26. 



The Bootstrap
• Sampling with 

replacement

load lawdata
figure(1); plot(lsat,gpa,'+')
lsline
rhohat = corr(lsat,gpa);
rhos1000 = 
bootstrp(1000,'corr',lsat,gpa);
[n,xout]=hist(rhos1000,30); 
figure(2); bar(xout,n); hold on;
plot([rhohat rhohat],[0 max(n)],'-rx');
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The Bootstrap for Regression
load lawdata; [n m]=size(lsat);
[b bint]=regress(gpa, [ones(n,1) lsat]);
for t=1:1000
samp_repl=floor(n*rand(size(lsat)))+1;
x=[ones(n,1) lsat(samp_repl)]; 

y=gpa(samp_repl);
b_boot = regress(y,x); 
int(t)=b_boot(1); slope(t)=b_boot(2);

end
[bin_n,xout]=hist(slope,30); 
figure(3); bar(xout,bin_n); hold on;
plot([bint(2,1) bint(2,1) bint(2,2) 
bint(2,2)],[max(bin_n) 0 0 max(bin_n)],'-rx');
figure(4); hold on;
for t=1:1000; 
plot(lsat,slope(t)*lsat+int(t),'m'); 

end
plot(lsat,gpa,'+'); 
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Plan for Today

• Regression 
– History / Motivation
– The method of least squares
– Inferences based on the least squares 

estimators
– Checking the adequacy of the model 
– The Bootstrap
– Non-linear regression



Polynomial Regression

εβα ++= xY

εββββ +++++= p
p xxxY ...2
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Often used for locally approximating “well behaved”
functions because of Taylor’s series approximation 



Beware of Over Fitting

Current 
(Amps) Efficiency

1.18 49.0%
1.22 48.5%
1.27 48.6%
1.3 52.5%
1.4 54.2%

1.49 54.7%
1.56 51.0%
1.69 52.7%
2.02 48.8%
2.36 42.4%
2.78 39.4%
3.26 38.1%

p2= polyfit(I,e,2)
p4 = polyfit(I,e,4)
I2=1:0.1:3.5;
e_hat2=polyval(p2,I2);
e_hat4=polyval(p4,I2);
plot(I,e,'+r',I2,e_hat2,'-g', I2,e_hat4,'-b')



Exponential Curve Fitting
Theta T/W
0 1
30 1.06708
60 1.13966
90 1.215042
120 1.296548
150 1.38352
180 1.436327
210 1.57536
240 1.701036
270 1.7938
300 1.914129
330 2.002529
360 2.179542

T We= μΘ

W

T

The Capstan 
Equation

lTW= log(TW);
p = polyfit(theta,lTW,1);
lTW_hat=polyval(p,theta);
TW_hat=exp(lTW_hat);
plot(theta,TW,'+r',theta,TW
_hat,'-g')



Concept Question
When you carry out an exponential regression by 
transforming the dependent variable, the resulting 
regression curve minimizes the sum squared error of 
the residuals as plotted here.

1) TRUE 
2) FALSE
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Next Steps
• Friday, 13 April

– Session to support the term project
– Be prepared to stand up and talk for 5 minutes 

about your ideas and your progress
• 16-17 April, No classes (Patriot's Day)
• Wednesday 18 April 

– Efron, "Bayesians, Frequentists, and Scientists"
– Analysis of Variance

• Friday 20 April, recitation (by Frey)
• Monday 23 April, PS#6 due
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